-
Notifications
You must be signed in to change notification settings - Fork 30
/
snek-pow.c
139 lines (121 loc) · 2.89 KB
/
snek-pow.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
/*
* Copyright © 2019 Keith Packard <[email protected]>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include "snek.h"
#include <math.h>
#if defined(__AVR__) && __AVR_LIBC_VERSION__ < 20201UL
#define float double
#endif
/*
* Compute expf using the traditional power series
*
* expf(a) = 1 + a/1 + a²/2! + a³/3! …
*/
float
expf(float a)
{
if (a < 0.0f)
return 1/expf(-a);
uint8_t e = 0;
/*
* Values larger than 0.5 need to be scaled so that the series
* converges in a reasonable amount of time We scale them to
* between 0.25 and 0.5, which makes the series converge in
* no more than 8 iterations
*/
if (a >= 0.5) {
int _e;
a = frexpf(a, &_e)/2.0;
e = _e + 1;
if (e > 7)
return INFINITY;
}
float term = 1.0f;
float sum = 0.0f;
uint8_t loop;
/*
* It would be better to perform the addition starting with
* the smallest terms, as that captures the contributions of
* those values better. But, that takes extra code and stack
* space.
*
* This loop converges after 8 iterations in the worst case,
* which is when a is the largest value less than 0.5. Instead
* of putting conditions in the loop, just run the loop for
* 9 iterations each time.
*/
for (loop = 1; loop < 9; loop++) {
/* Compute next term in the sum */
term *= a / (float) loop;
/* Add it in */
sum += term;
}
/* sum = sum ** (2 ** e) */
sum += 1.0f;
while (e--)
sum *= sum;
return sum;
}
/*
* newtons method computation of log
*
* a = exp(x)
* f(x) = exp(x) - a
* f'(x) = exp(x)
*
* x' = x - (exp(x) - a) / exp(x)
*/
static const float _log2 = 0.693147180559945f;
float
logf(float a)
{
int e;
a = frexpf(a, &e);
float l = -_log2;
if (a != 0.5f) {
uint8_t loop;
/* Worst case, we need 5 iterations to converge */
for (loop = 0; loop < 5; loop++) {
float ex = expf(l);
l = l - (ex - a) / ex;
}
}
return l + (float) e * _log2;
}
/* A more accurate version when the exponent is an integer. This
* makes integer ** integer give an integer where possible
*/
static inline float
ipow(float a, uint8_t x)
{
float r = 1;
while (x) {
if (x & 1)
r *= a;
x >>= 1;
a *= a;
}
return r;
}
float
powf(float a, float b)
{
uint8_t u = b;
if (u == b)
return ipow(a, u);
return expf(logf(a) * b);
}