-
Notifications
You must be signed in to change notification settings - Fork 188
/
SA.py
executable file
·196 lines (177 loc) · 6.31 KB
/
SA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import random
import math
import numpy as np
import matplotlib.pyplot as plt
class SA(object):
def __init__(self, num_city, data):
self.T0 = 4000
self.Tend = 1e-3
self.rate = 0.9995
self.num_city = num_city
self.scores = []
self.location = data
# fruits中存每一个个体是下标的list
self.fires = []
self.dis_mat = self.compute_dis_mat(num_city, data)
self.fire = self.greedy_init(self.dis_mat,100,num_city)
# 显示初始化后的路径
init_pathlen = 1. / self.compute_pathlen(self.fire, self.dis_mat)
init_best = self.location[self.fire]
# 存储存储每个温度下的最终路径,画出收敛图
self.iter_x = [0]
self.iter_y = [1. / init_pathlen]
def greedy_init(self, dis_mat, num_total, num_city):
start_index = 0
result = []
for i in range(num_total):
rest = [x for x in range(0, num_city)]
# 所有起始点都已经生成了
if start_index >= num_city:
start_index = np.random.randint(0, num_city)
result.append(result[start_index].copy())
continue
current = start_index
rest.remove(current)
# 找到一条最近邻路径
result_one = [current]
while len(rest) != 0:
tmp_min = math.inf
tmp_choose = -1
for x in rest:
if dis_mat[current][x] < tmp_min:
tmp_min = dis_mat[current][x]
tmp_choose = x
current = tmp_choose
result_one.append(tmp_choose)
rest.remove(tmp_choose)
result.append(result_one)
start_index += 1
pathlens = self.compute_paths(result)
sortindex = np.argsort(pathlens)
index = sortindex[0]
return result[index]
# 初始化一条随机路径
def random_init(self, num_city):
tmp = [x for x in range(num_city)]
random.shuffle(tmp)
return tmp
# 计算不同城市之间的距离
def compute_dis_mat(self, num_city, location):
dis_mat = np.zeros((num_city, num_city))
for i in range(num_city):
for j in range(num_city):
if i == j:
dis_mat[i][j] = np.inf
continue
a = location[i]
b = location[j]
tmp = np.sqrt(sum([(x[0] - x[1]) ** 2 for x in zip(a, b)]))
dis_mat[i][j] = tmp
return dis_mat
# 计算路径长度
def compute_pathlen(self, path, dis_mat):
a = path[0]
b = path[-1]
result = dis_mat[a][b]
for i in range(len(path) - 1):
a = path[i]
b = path[i + 1]
result += dis_mat[a][b]
return result
# 计算一个温度下产生的一个群体的长度
def compute_paths(self, paths):
result = []
for one in paths:
length = self.compute_pathlen(one, self.dis_mat)
result.append(length)
return result
# 产生一个新的解:随机交换两个元素的位置
def get_new_fire(self, fire):
fire = fire.copy()
t = [x for x in range(len(fire))]
a, b = np.random.choice(t, 2)
fire[a:b] = fire[a:b][::-1]
return fire
# 退火策略,根据温度变化有一定概率接受差的解
def eval_fire(self, raw, get, temp):
len1 = self.compute_pathlen(raw, self.dis_mat)
len2 = self.compute_pathlen(get, self.dis_mat)
dc = len2 - len1
p = max(1e-1, np.exp(-dc / temp))
if len2 < len1:
return get, len2
elif np.random.rand() <= p:
return get, len2
else:
return raw, len1
# 模拟退火总流程
def sa(self):
count = 0
# 记录最优解
best_path = self.fire
best_length = self.compute_pathlen(self.fire, self.dis_mat)
while self.T0 > self.Tend:
count += 1
# 产生在这个温度下的随机解
tmp_new = self.get_new_fire(self.fire.copy())
# 根据温度判断是否选择这个解
self.fire, file_len = self.eval_fire(best_path, tmp_new, self.T0)
# 更新最优解
if file_len < best_length:
best_length = file_len
best_path = self.fire
# 降低温度
self.T0 *= self.rate
# 记录路径收敛曲线
self.iter_x.append(count)
self.iter_y.append(best_length)
print(count, best_length)
return best_length, best_path
def run(self):
best_length, best_path = self.sa()
return self.location[best_path], best_length
# 读取数据
def read_tsp(path):
lines = open(path, 'r').readlines()
assert 'NODE_COORD_SECTION\n' in lines
index = lines.index('NODE_COORD_SECTION\n')
data = lines[index + 1:-1]
tmp = []
for line in data:
line = line.strip().split(' ')
if line[0] == 'EOF':
continue
tmpline = []
for x in line:
if x == '':
continue
else:
tmpline.append(float(x))
if tmpline == []:
continue
tmp.append(tmpline)
data = tmp
return data
data = read_tsp('data/st70.tsp')
data = np.array(data)
data = data[:, 1:]
show_data = np.vstack([data, data[0]])
Best, Best_path = math.inf, None
model = SA(num_city=data.shape[0], data=data.copy())
path, path_len = model.run()
print(path_len)
if path_len < Best:
Best = path_len
Best_path = path
# 加上一行因为会回到起点
Best_path = np.vstack([Best_path, Best_path[0]])
fig, axs = plt.subplots(2, 1, sharex=False, sharey=False)
axs[0].scatter(Best_path[:, 0], Best_path[:,1])
Best_path = np.vstack([Best_path, Best_path[0]])
axs[0].plot(Best_path[:, 0], Best_path[:, 1])
axs[0].set_title('规划结果')
iterations = model.iter_x
best_record = model.iter_y
axs[1].plot(iterations, best_record)
axs[1].set_title('收敛曲线')
plt.show()