-
Notifications
You must be signed in to change notification settings - Fork 2
/
config.py
452 lines (403 loc) · 26.3 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
import logging
import os
import sys
import time
def init_logging(log_file, stdout=False):
formatter = logging.Formatter('%(asctime)s [%(levelname)s] %(module)s: %(message)s',
datefmt='%m/%d/%Y %H:%M:%S' )
print('Making log output file: %s' % log_file)
print(log_file[: log_file.rfind(os.sep)])
if not os.path.exists(log_file[: log_file.rfind(os.sep)]):
os.makedirs(log_file[: log_file.rfind(os.sep)])
fh = logging.FileHandler(log_file)
fh.setFormatter(formatter)
fh.setLevel(logging.INFO)
logger = logging.getLogger()
logger.addHandler(fh)
logger.setLevel(logging.INFO)
if stdout:
ch = logging.StreamHandler(sys.stdout)
ch.setFormatter(formatter)
ch.setLevel(logging.INFO)
logger.addHandler(ch)
return logger
def model_opts(parser):
"""
These options are passed to the construction of the model.
Be careful with these as they will be used during translation.
"""
# Embedding Options
parser.add_argument('-word_vec_size', type=int, default=128,
help='Word embedding for both.')
#parser.add_argument('-position_encoding', action='store_true',
# help='Use a sin to mark relative words positions.')
parser.add_argument('-share_embeddings', default=True, action='store_true',
help="""Share the word embeddings between encoder
and decoder.""")
parser.add_argument('-v_size', type=int, default=50000,
help="Size of the vocabulary (excluding the special tokens)")
# RNN Options
parser.add_argument('-encoder_type', type=str, default='rnn',
choices=['rnn', 'brnn', 'mean', 'transformer', 'cnn'],
help="""Type of encoder layer to use.""")
parser.add_argument('-decoder_type', type=str, default='rnn',
choices=['rnn', 'transformer', 'cnn'],
help='Type of decoder layer to use.')
parser.add_argument('-enc_layers', type=int, default=1,
help='Number of layers in the encoder')
parser.add_argument('-dec_layers', type=int, default=1,
help='Number of layers in the decoder')
parser.add_argument('-encoder_size', type=int, default=150,
help='Size of encoder hidden states')
parser.add_argument('-decoder_size', type=int, default=300,
help='Size of decoder hidden states')
parser.add_argument('-dropout', type=float, default=0.1,
help="Dropout probability; applied in LSTM stacks.")
# parser.add_argument('-input_feed', type=int, default=1,
# help="""Feed the context vector at each time step as
# additional input (via concatenation with the word
# embeddings) to the decoder.""")
#parser.add_argument('-rnn_type', type=str, default='GRU',
# choices=['LSTM', 'GRU'],
# help="""The gate type to use in the RNNs""")
# parser.add_argument('-residual', action="store_true",
# help="Add residual connections between RNN layers.")
#parser.add_argument('-input_feeding', action="store_true",
# help="Apply input feeding or not. Feed the updated hidden vector (after attention)"
# "as new hidden vector to the decoder (Luong et al. 2015). "
# "Feed the context vector at each time step after normal attention"
# "as additional input (via concatenation with the word"
# "embeddings) to the decoder.")
parser.add_argument('-bidirectional', default=True,
action = "store_true",
help="whether the encoder is bidirectional")
parser.add_argument('-bridge', type=str, default='copy',
choices=['copy', 'dense', 'dense_nonlinear', 'none'],
help="An additional layer between the encoder and the decoder")
# Attention options
parser.add_argument('-attn_mode', type=str, default='concat',
choices=['general', 'concat'],
help="""The attention type to use:
dot or general (Luong) or concat (Bahdanau)""")
#parser.add_argument('-attention_mode', type=str, default='concat',
# choices=['dot', 'general', 'concat'],
# help="""The attention type to use:
# dot or general (Luong) or concat (Bahdanau)""")
# Genenerator and loss options.
parser.add_argument('-copy_attention', action="store_true",
help='Train a copy model.')
# lightweight decoder
parser.add_argument('-light_weight_decoder', action="store_true",
help='lightweight decoder.')
#parser.add_argument('-copy_mode', type=str, default='concat',
# choices=['dot', 'general', 'concat'],
# help="""The attention type to use: dot or general (Luong) or concat (Bahdanau)""")
#parser.add_argument('-copy_input_feeding', action="store_true",
# help="Feed the context vector at each time step after copy attention"
# "as additional input (via concatenation with the word"
# "embeddings) to the decoder.")
#parser.add_argument('-reuse_copy_attn', action="store_true",
# help="Reuse standard attention for copy (see See et al.)")
#parser.add_argument('-copy_gate', action="store_true",
# help="A gate controling the flow from generative model and copy model (see See et al.)")
parser.add_argument('-coverage_attn', action="store_true",
help='Train a coverage attention layer.')
parser.add_argument('-review_attn', action="store_true",
help='Train a review attention layer')
parser.add_argument('-lambda_coverage', type=float, default=1.0,
help='Lambda value for coverage by See et al.')
parser.add_argument('-coverage_loss', action="store_true", default=False,
help='whether to include coverage loss')
parser.add_argument('-orthogonal_loss', action="store_true", default=False,
help='whether to include orthogonal loss')
parser.add_argument('-lambda_orthogonal', type=float, default=0.03,
help='Lambda value for the orthogonal loss by Yuan et al.')
parser.add_argument('-use_ortho_LSTM', action="store_true", default=False,
help='whether to use_ortho_LSTM in diversity attn decoder')
#parser.add_argument('-manager_mode', type=int, default=1, choices=[1],
# help='Only effective in separate_present_absent. 1: two trainable vectors as the goal vectors;')
#parser.add_argument('-goal_vector_size', type=int, default=16,
# help='size of goal vector')
#parser.add_argument('-goal_vector_mode', type=int, default=0, choices=[0, 1, 2],
# help='Only effective in separate_present_absent. 0: no goal vector; 1: goal vector act as an extra input to the decoder; 2: goal vector act as an extra input to p_gen')
parser.add_argument('-model_type', type=str, default="seq2seq",
choices=['seq2seq', 'seq2seq_style_input'], help='size of goal vector')
def train_ml_opts(parser):
# Model loading/saving options
parser.add_argument('-data', required=True,
help="""Path prefix to the train and val folder""")
parser.add_argument('-train_from', default='', type=str,
help="""If training from a checkpoint then this is the
path to the pretrained model's state_dict.""")
# GPU
parser.add_argument('-gpuid', default=0, type=int,
help="Use CUDA on the selected device.")
#parser.add_argument('-gpuid', default=[0], nargs='+', type=int,
# help="Use CUDA on the listed devices.")
parser.add_argument('-seed', type=int, default=9527,
help="""Random seed used for the experiments
reproducibility.""")
parser.add_argument('-delimiter', type=str, default='.',
help='Delimiter for orthogonal regularization')
parser.add_argument('-src_max_len', type=int, default=400, help='The maximum number of words in source.')
parser.add_argument('-trg_max_len', type=int, default=100, help='The maximum number of words in target.')
# Init options
parser.add_argument('-epochs', type=int, default=20,
help='Number of training epochs')
parser.add_argument('-start_epoch', type=int, default=1,
help='The epoch from which to start')
parser.add_argument('-control_modes', nargs='+', default=[], type=int,
help='0: nothing. 1: control length bin. 2: control exact length. 3: novel 3-gram range. 4: novel 2-gram range. 5: extractive_fragment density bin. 6: sentence fusion')
parser.add_argument('-use_positional_encoding', action="store_true", default=False,
help='Use positional encoding in the RNN encoder. ')
# Pretrained word vectors
parser.add_argument('-w2v', type=str, help="""use pretrained word2vec word embedding""")
# Fixed word vectors
"""
parser.add_argument('-fix_word_vecs_enc',
action='store_true',
help="Fix word embeddings on the encoder side.")
parser.add_argument('-fix_word_vecs_dec',
action='store_true',
help="Fix word embeddings on the encoder side.")
"""
# Optimization options
parser.add_argument('-batch_size', type=int, default=64,
help='Maximum batch size')
parser.add_argument('-batch_workers', type=int, default=4,
help='Number of workers for generating batches')
#parser.add_argument('-optim', default='adam',
# choices=['sgd', 'adagrad', 'adadelta', 'adam'],
# help="""Optimization method.""")
parser.add_argument('-max_grad_norm', type=float, default=2,
help="""If the norm of the gradient vector exceeds this,
renormalize it to have the norm equal to
max_grad_norm""")
parser.add_argument('-loss_normalization', default="tokens", choices=['tokens', 'batches'],
help="Normalize the cross-entropy loss by the number of tokens or batch size")
# learning rate
parser.add_argument('-learning_rate', type=float, default=0.001,
help="""Starting learning rate.
Recommended settings: sgd = 1, adagrad = 0.1,
adadelta = 1, adam = 0.001""")
parser.add_argument('-min_lr', type=float, default=1e-5,
help="""minimum learning rate""")
parser.add_argument('-learning_rate_decay', type=float, default=0.5,
help="""If update_learning_rate, decay learning rate by
this much if (i) perplexity does not decrease on the
validation set or (ii) epoch has gone past
start_decay_at""")
parser.add_argument('-start_checkpoint_at', type=int, default=2,
help="""Start checkpointing every epoch after and including
this epoch""")
parser.add_argument('-start_decay_and_early_stop_at', type=int, default=2,
help="""Start learning rate decay and check for early stopping after
and including this epoch""")
parser.add_argument('-checkpoint_interval', type=int, default=4000,
help='Run validation and save model parameters at this interval.')
parser.add_argument('-disable_early_stop', action="store_true", default=False,
help="A flag to disable early stopping in rl training.")
parser.add_argument('-early_stop_tolerance', type=int, default=4,
help="Stop training if it doesn't improve any more for several rounds of validation")
# export options
timemark = time.strftime('%Y%m%d-%H%M%S', time.localtime(time.time()))
parser.add_argument('-timemark', type=str, default=timemark,
help="The current time stamp.")
parser.add_argument('-exp', type=str, default="cnn-dm",
help="Name of the experiment for logging.")
parser.add_argument('-exp_path', type=str, default="exp/%s.%s",
help="Path of experiment log/plot.")
parser.add_argument('-model_path', type=str, default="saved_model/%s.%s",
help="Path to save model checkpoints.")
parser.add_argument('-styles', default=[], nargs='+', type=str,
help="The name of the styles.")
parser.add_argument('-multi_style', action="store_true", default=False,
help='whether to learn multiple styles')
def train_rl_opts(parser):
# Model loading/saving options
parser.add_argument('-pretrained_model', required=True,
help='Path to model .pt file')
parser.add_argument('-data', required=True,
help="""Path prefix to the train and val folder""")
parser.add_argument('-train_from', default='', type=str,
help="""If training from a checkpoint then this is the
path to the pretrained model's state_dict.""")
# GPU
parser.add_argument('-gpuid', default=0, type=int,
help="Use CUDA on the selected device.")
# parser.add_argument('-gpuid', default=[0], nargs='+', type=int,
# help="Use CUDA on the listed devices.")
parser.add_argument('-seed', type=int, default=9527,
help="""Random seed used for the experiments
reproducibility.""")
parser.add_argument('-delimiter', type=str, default='.',
help='Delimiter for orthogonal regularization')
parser.add_argument('-src_max_len', type=int, default=400, help='The maximum number of words in source.')
parser.add_argument('-trg_max_len', type=int, default=120, help='The maximum number of words in target. Not truncate target by default')
# Init options
parser.add_argument('-epochs', type=int, default=20,
help='Number of training epochs')
parser.add_argument('-start_epoch', type=int, default=1,
help='The epoch from which to start')
# Optimization options
parser.add_argument('-batch_size', type=int, default=64,
help='Maximum batch size')
parser.add_argument('-batch_workers', type=int, default=4,
help='Number of workers for generating batches')
# parser.add_argument('-optim', default='adam',
# choices=['sgd', 'adagrad', 'adadelta', 'adam'],
# help="""Optimization method.""")
parser.add_argument('-max_grad_norm', type=float, default=2,
help="""If the norm of the gradient vector exceeds this,
renormalize it to have the norm equal to
max_grad_norm""")
# Reinforcement Learning options
parser.add_argument('-regularization_type', type=int, default=0, choices=[0, 1, 2],
help='0: no regularization, 1: percentage of unique keyphrases, 2: entropy')
parser.add_argument('-regularization_factor', type=float, default=0.0,
help="Factor of regularization")
parser.add_argument('-replace_unk', action="store_true",
help='Replace the unk token with the token of highest attention score.')
parser.add_argument('-max_sample_length', default=6, type=int,
help="The max length of sequence that can be sampled by the model")
parser.add_argument('-max_greedy_length', default=6, type=int,
help="The max length of sequence that can be sampled by the model")
parser.add_argument('-pred_max_len', type=int, default=120, help='Maximum prediction length.')
parser.add_argument('-reward_type', default='0', type=int,
choices=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18],
help="""Type of reward. 0: weighted sum of ROUGE-1, ROUGE-2, and ROUGE-L. 1: ROUGE-L. 2: Bert score""")
parser.add_argument('-baseline', default="self", choices=["none", "self"],
help="The baseline in RL training. none: no baseline; self: use greedy decoding as baseline")
#parser.add_argument('-mc_rollouts', action="store_true", default=False,
# help="Use Monte Carlo rollouts to estimate q value. Not support yet.")
#parser.add_argument('-num_rollouts', type=int, default=3,
# help="The number of Monte Carlo rollouts. Only effective when mc_rollouts is True. Not supported yet")
parser.add_argument('-n_sample', type=int, default=1,
help="The number of samples to draw for each input sequence. ")
parser.add_argument('-loss_normalization', default="none", choices=['none', 'batches', 'samples'],
help="Normalization of the policy gradient loss.")
parser.add_argument('-sent_level_reward', action="store_true",
help="Use sentence level reward")
parser.add_argument('-constrained_mdp', action="store_true",
help="Use constrained mdp")
parser.add_argument('-cost_types', nargs='+', default=[], type=int,
help=""" Specify a list of cost function.
Type of cost function. 0: number of 3-gram repeat. 1: min len penalty. Only effective when using constrained mdp.""")
parser.add_argument('-cost_thresholds', nargs='+', default=[], type=float,
help=""" Specify a list of thresholds. Only effective when using constrained mdp.""")
parser.add_argument('-lagrangian_init_val', type=float, default=0.0,
help="The initial value of the lagrangian multiplier. ")
parser.add_argument('-use_lagrangian_hinge_loss', action="store_true",
help="Use hinge loss in lagrangian. ")
# learning rate
parser.add_argument('-learning_rate', type=float, default=0.00005,
help="""Starting learning rate of policy.""")
parser.add_argument('-learning_rate_multiplier', type=float, default=0.00001,
help="""Starting learning rate of lagrangian multiplier.""")
parser.add_argument('-min_lr', type=float, default=1e-5,
help="""minimum learning rate""")
parser.add_argument('-learning_rate_decay', type=float, default=0.5,
help="""If update_learning_rate, decay learning rate by
this much if (i) perplexity does not decrease on the
validation set or (ii) epoch has gone past
start_decay_at""")
parser.add_argument('-start_checkpoint_at', type=int, default=2,
help="""Start checkpointing every epoch after and including
this epoch""")
parser.add_argument('-start_decay_and_early_stop_at', type=int, default=2,
help="""Start learning rate decay and check for early stopping after
and including this epoch""")
parser.add_argument('-checkpoint_interval', type=int, default=4000,
help='Run validation and save model parameters at this interval.')
parser.add_argument('-disable_early_stop', action="store_true", default=False,
help="A flag to disable early stopping in rl training.")
parser.add_argument('-early_stop_tolerance', type=int, default=4,
help="Stop training if it doesn't improve any more for several rounds of validation")
parser.add_argument('-decay_multiplier_learning_rate', action="store_true",
help="Decay the learning rate of lagrangian multiplier. ")
parser.add_argument('-ml_loss_coefficient', type=float, default=0.0,
help="""The coefficient for the ml loss. """)
parser.add_argument('-pg_loss_coefficient', type=float, default=-1.0,
help="""The coefficient for the pg loss. Only effective when using ML loss""")
# export options
timemark = time.strftime('%Y%m%d-%H%M%S', time.localtime(time.time()))
parser.add_argument('-timemark', type=str, default=timemark,
help="The current time stamp.")
parser.add_argument('-exp', type=str, default="kp20k",
help="Name of the experiment for logging.")
parser.add_argument('-exp_path', type=str, default="exp/%s.%s",
help="Path of experiment log/plot.")
parser.add_argument('-model_path', type=str, default="saved_model/%s.%s",
help="Path to save model checkpoints.")
def predict_opts(parser):
parser.add_argument('-pretrained_model', required=True,
help='Path to model .pt file')
parser.add_argument('-attn_debug', action="store_true", help="Whether to print attn for each word")
#parser.add_argument('-src_file', required=True,
# help="""Path to source file""")
#parser.add_argument('-trg_file', required=True,
# help="""Path to target file""")
parser.add_argument('-data', required=True,
help="""Path prefix to test folder""")
parser.add_argument('-split', default='test',
help="""Which split to decode""")
parser.add_argument('-beam_size', type=int, default=5,
help='Beam size')
parser.add_argument('-n_best', type=int, default=1,
help='Pick the top n_best sequences from beam_search, if n_best < 0, then n_best=beam_size')
parser.add_argument('-src_max_len', type=int, default=-1, help='The maximum number of words in source.')
parser.add_argument('-pred_max_len', type=int, default=120,
help='Maximum prediction length.')
parser.add_argument('-length_penalty_factor', type=float, default=0.,
help="""Google NMT length penalty parameter
(higher = longer generation)""")
parser.add_argument('-coverage_penalty_factor', type=float, default=-0.,
help="""Coverage penalty parameter""")
parser.add_argument('-length_penalty', default='none', choices=['none', 'wu', 'avg'],
help="""Length Penalty to use.""")
parser.add_argument('-coverage_penalty', default='none', choices=['none', 'wu', 'summary'],
help="""Coverage Penalty to use.""")
parser.add_argument('-gpuid', default=0, type=int,
help="Use CUDA on the selected device.")
parser.add_argument('-seed', type=int, default=9527,
help="""Random seed used for the experiments
reproducibility.""")
parser.add_argument('-batch_size', type=int, default=8,
help='Maximum batch size')
parser.add_argument('-batch_workers', type=int, default=4,
help='Number of workers for generating batches')
parser.add_argument('-with_groundtruth_style', action="store_true", default=False,
help='Provide the ground-truth style.')
parser.add_argument('-target_style', type=str, default="",
help='The name of style to be predicted. Only effective when using multi_style')
parser.add_argument('-multi_style', action="store_true", default=False,
help='whether the pretrained model used multi_styles')
parser.add_argument('-with_ground_truth_input', action="store_true", default=False,
help='Provide the ground-truth len bin.')
parser.add_argument('-desired_target_numbers', nargs='+', default=[], type=int,
help='The target len bin.')
parser.add_argument('-multiple_reference', action="store_true", default=False,
help='Whether the dataset has multiple_reference')
timemark = time.strftime('%Y%m%d-%H%M%S', time.localtime(time.time()))
parser.add_argument('-timemark', type=str, default=timemark,
help="The current time stamp.")
parser.add_argument('-include_attn_dist', action="store_true",
help="Whether to return the attention distribution, for the visualization of the attention weights, haven't implemented")
parser.add_argument('-pred_path', type=str, required=True,
help="Path of outputs of predictions.")
parser.add_argument('-pred_file_prefix', type=str, default="",
help="Prefix of prediction file.")
#parser.add_argument('-exp', type=str, default="cnn-dm",
# help="Name of the experiment for logging.")
parser.add_argument('-delimiter', type=str, default='.',
help='Delimiter for orthogonal regularization')
parser.add_argument('-max_eos_per_output_seq', type=int, default=1, # max_eos_per_seq
help='Specify the max number of eos in one output sequences to control the number of keyphrases in one output sequence. Only effective when one2many_mode=3 or one2many_mode=2.')
parser.add_argument('-sampling', action="store_true",
help='Use sampling instead of beam search to generate the predictions.')
parser.add_argument('-replace_unk', action="store_true",
help='Replace the unk token with the token of highest attention score.')
parser.add_argument('-block_ngram_repeat', type=int, default=0,
help='Block repeat of n-gram')
parser.add_argument('-ignore_when_blocking', nargs='+', type=str,
default=[], help="""Ignore these strings when blocking repeats. You want to block sentence delimiters.""")