-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathtweet_sentiment.py
64 lines (48 loc) · 1.92 KB
/
tweet_sentiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import sys
import json
sentimentData = sys.argv[1] #AFIN-111.txt
twitterData = sys.argv[2] #output.txt
def tweet_dict(twitterData):
''' (file) -> list of dictionaries
This method should take your output.txt
file and create a list of dictionaries.
'''
twitter_list_dict = []
twitterfile = open(twitterData)
for line in twitterfile:
#twitter_list_dict.append(json.loads(line.decode('utf-8-sig')))
twitter_list_dict.append(json.loads(line))
return twitter_list_dict
#return data_read["text"]
def sentiment_dict(sentimentData):
''' (file) -> dictionary
This method should take your sentiment file
and create a dictionary in the form {word: value}
'''
afinnfile = open(sentimentData)
scores = {} # initialize an empty dictionary
for line in afinnfile:
term, score = line.split("\t") # The file is tab-delimited. "\t" means "tab character"
scores[term] = float(score) # Convert the score to an integer.
return scores # Print every (term, score) pair in the dictionary
def main():
tweets = tweet_dict(twitterData)
sentiment = sentiment_dict(sentimentData)
'''Create a method below that loops through each tweet in your
twees_list. For each individual tweet it should add up you sentiment
score, based on the sent_dict.
'''
for index in range(len(tweets)):
tweet_word = tweets[index]["text"].split()
sent_score = 0
for word in tweet_word:
word = word.rstrip('?:!.,;"!@')
word = word.replace("\n", "")
if not (word.encode('utf-8', 'ignore') == ""):
if word.encode('utf-8') in sentiment.keys():
sent_score = sent_score + float(sentiment[word])
else:
sent_score = sent_score
print float(sent_score)
if __name__ == '__main__':
main()