-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPickElement.v
978 lines (908 loc) · 50.3 KB
/
PickElement.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
(**********************************************************************************
* The PEDANTIC (Proof Engine for Deductive Automation using Non-deterministic
* Traversal of Instruction Code) verification framework
*
* Developed by Kenneth Roe
* For more information, check out www.cs.jhu.edu/~roe
*
* PickElement.v
* This file contains definitions and tactics for picking elements out of an
* abstract state.
*
* Some key definitions:
* spickElement - pick an element in an absState
* pickElement - a variant of spickElement
* pickElementNi - a variant of pickElement
* pick2Rs - pick two matching R terms from two separate absStates
* pick2RsNi - variant of pick2Rs
* allPredicates - determine whether a state has been reduced entirely to predicates
*
**********************************************************************************)
Require Export SfLib.
Require Export ImpHeap.
Require Export AbsState.
Require Export AbsStateInstance.
Require Export Coq.Logic.FunctionalExtensionality.
Fixpoint delete_nat (n : nat) (l : list nat) :=
match l with
| a::b => if beq_nat n a then delete_nat n b else a::(delete_nat n b)
| nil => nil
end.
Fixpoint beq_nat_list (l1 : list nat) (l2 : list nat) : bool :=
match (l1,l2) with
| (f1::r1,f2::r2) => if beq_nat f1 f2 then beq_nat_list r1 r2 else false
| (nil,nil) => true
| _ => false
end.
Fixpoint mem_pair (x : nat * nat) (l : list (nat * nat)) : bool :=
match (x,l) with
| ((x1,x2),((f1,f2)::r)) => if beq_nat x1 f1 then if beq_nat x2 f2 then true else mem_pair x r else mem_pair x r
| _ => false
end.
Fixpoint no_first (x : nat) (l : list (nat * nat)) : bool :=
match l with
| ((f1,f2)::r) => if beq_nat x f1 then false else no_first x r
| _ => true
end.
Fixpoint no_second (x : nat) (l : list (nat * nat)) : bool :=
match l with
| ((f1,f2)::r) => if beq_nat x f2 then false else no_second x r
| _ => true
end.
Fixpoint noQVarExp (e : absExp) : bool :=
match e with
| AbsConstVal v => true
| AbsVar v => true
| AbsQVar vv => false
| AbsFun i l => (fix go (l : list absExp) := match l with | nil => true | (f::r) => if noQVarExp f then go r else false end) l
end.
Fixpoint noQVarState (s : absState) : bool :=
match s with
| AbsStar s1 s2 => if noQVarState s1 then noQVarState s2 else false
| AbsOrStar s1 s2 => if noQVarState s1 then noQVarState s2 else false
| AbsExistsT s => noQVarState s
| AbsExists e s => if noQVarExp e then noQVarState s else false
| AbsAll e s => if noQVarExp e then noQVarState s else false
| AbsEach e s => if noQVarExp e then noQVarState s else false
| AbsEmpty => true
| AbsAny => true
| AbsNone => true
| AbsLeaf i l => (fix go (l : list absExp) := match l with | nil => true | (f::r) => if noQVarExp f then go r else false end) l
| AbsAccumulate id e1 e2 e3 =>
if noQVarExp e1 then
if noQVarExp e2 then
noQVarExp e3 else false else false
| AbsMagicWand s1 s2 => if noQVarState s1 then noQVarState s2 else false
| AbsUpdateVar s i e => if noQVarExp e then noQVarState s else false
| AbsUpdateWithLoc s i e => if noQVarExp e then noQVarState s else false
| AbsUpdateLoc s l e => if noQVarExp l then if noQVarExp e then noQVarState s else false else false
| AbsUpdState s1 s2 s3 => if noQVarState s1 then if noQVarState s2 then noQVarState s3 else false else false
| AbsClosure s l => (fix go (l : list absExp) := match l with | nil => true | (f::r) => if noQVarExp f then go r else false end) l
end.
Fixpoint mem_absExp (e : absExp) (l : list absExp) :=
match l with
| (f::r) => if beq_absExp e f then true else mem_absExp e r
| _ => false
end.
Fixpoint common_element (l1 : list absExp) (l2 : list absExp) : option absExp :=
match l1 with
| (f::r) => if (mem_absExp f l2) then Some f else common_element r l2
| _ => None
end.
Fixpoint equiv_absExp2 (e1 : absExp) (e2 : absExp) (s1 : list absExp) (equiv2 : list (list absExp)) : option absExp :=
match equiv2 with
| (f::r) => if mem_absExp e2 f then common_element s1 f else equiv_absExp2 e1 e2 s1 r
| _ => if mem_absExp e2 s1 then Some e2 else None
end.
Fixpoint equiv_absExp (e1 : absExp) (e2 : absExp) (equiv1 : list (list absExp)) (equiv2 : list (list absExp)) : option absExp :=
match equiv1 with
| (f::r) => if mem_absExp e1 f then equiv_absExp2 e1 e2 f equiv2 else equiv_absExp e1 e2 r equiv2
| _ => equiv_absExp2 e1 e2 (e1::nil) equiv2
end.
Definition pair_apply {t} {r} (f : t -> t -> r -> option (r*t*t)) : r -> list t -> list t -> option (r * list t * list t) :=
fix go r l1 l2 :=
match l1,l2 with
| nil,nil => Some (r,nil,nil)
| f1::r1,f2::r2 => match f f1 f2 r with
| Some (rr,t1,t2) => match go rr r1 r2 with
| Some (rrr,tl1,tl2) => Some (rrr,t1::tl1,t2::tl2)
| None => None
end
| None => None
end
| _, _ => None
end.
Fixpoint ml (n : nat) (pairs : list (nat * nat)) : option nat :=
match pairs with
| nil => None
| ((a,b)::r) => if beq_nat b n then Some a else ml n r
end.
Fixpoint strip_pair (n1 : nat) (n2 : nat) (pairs : list (nat * nat)) : list (nat * nat) :=
match pairs with
| nil => nil
| ((S a,S b)::r) => ((a,b)::(strip_pair n1 n2 r))
| (_::r) => strip_pair n1 n2 r
end.
Fixpoint mapExpLeft (t1 : nat) (t2 : nat) (pairs : list (nat * nat)) (e : absExp) : option absExp :=
match e with
| AbsConstVal v => Some (AbsConstVal v)
| AbsVar v => Some (AbsVar v)
| AbsQVar vv => if ble_nat t2 vv then
Some (AbsQVar (vv+t1-t2))
else
match ml vv pairs with
| Some x => Some (AbsQVar x)
| None => None
end
| AbsFun i l => match (fix go (l : list absExp) :=
match l with
| nil => Some nil
| (f::r) => match (mapExpLeft t1 t2 pairs f,go r) with
| (Some ff,Some rr) => Some (ff::rr)
| _ => None
end
end) l with
| Some l => Some (AbsFun i l)
| None => None
end
end.
Fixpoint mapStateLeft (t1 : nat) (t2 : nat) (pairs : list (nat * nat)) (s : absState) : option absState :=
match s with
| AbsStar s1 s2 => match mapStateLeft t1 t2 pairs s1,mapStateLeft t1 t2 pairs s2 with
| Some s1,Some s2 => Some (AbsStar s1 s2)
| _,_ => None
end
| AbsOrStar s1 s2 => match mapStateLeft t1 t2 pairs s1,mapStateLeft t1 t2 pairs s2 with
| Some s1,Some s2 => Some (AbsOrStar s1 s2)
| _,_ => None
end
| AbsExistsT s => match mapStateLeft t1 t2 pairs s with
| Some s' => Some (AbsExistsT s')
| _ => None
end
| AbsExists e s => match mapStateLeft t1 t2 pairs s,mapExpLeft t1 t2 pairs e with
| Some s,Some e => Some (AbsExists e s)
| _,_ => None
end
| AbsAll e s => match mapStateLeft t1 t2 pairs s,mapExpLeft t1 t2 pairs e with
| Some s,Some e => Some (AbsAll e s)
| _,_ => None
end
| AbsEach e s => match mapStateLeft t1 t2 pairs s,mapExpLeft t1 t2 pairs e with
| Some s,Some e => Some (AbsEach e s)
| _,_ => None
end
| AbsEmpty => Some AbsEmpty
| AbsLeaf i l => match (fix go (l : list absExp) :=
match l with
| nil => Some nil
| (f::r) => match (mapExpLeft t1 t2 pairs f,go r) with
| (Some ff,Some rr) => Some (ff::rr)
| _ => None
end
end) l with
| Some l => Some (AbsLeaf i l)
| None => None
end
| _ => None
end.
(*| AbsAccumulate id1 l1 id2 e l2 ee =>
if noQVarExp e then
if noQVarExp ee then
if (fix go (l : list (@absExp ev eq f)) := match l with | nil => true | (f::r) => if noQVarExp f then go r else false end) l1 then
(fix go (l : list (@absExp ev eq f)) := match l with | nil => true | (f::r) => if noQVarExp f then go r else false end) l2
else false else false else false*)
(*
* match two expressions
*
* Determine whether two expressions are identical with the exception of bound variable references.
* If they are, then return the mapping between bound variable references in one to references in the
* other
*
* Parameters:
* equivl - list of subexpressions in left (first exp) known to be equivalent
* equivr - list of subexpressions in right (second exp) known to be equivalent
* Subterms in this set are all treated as equal by the algorithm
* limit1 - bound variable upper limit for first expression
* limit2 - bound variable upper limit for second expression
* Bound variables in e1 and e2 may exceed limit1 and limit2 resp. However, then
* v1-limit1=v2-limit for the subterms to be equivalent. No pairing is done in this
* case.
* e1 - first expression
* e2 - second expression
* pairs - bound variables already paired up
* Returned:
* list of bound variable pairings.
*)
Definition funFix (x : option ((list (nat * nat)) * (list absExp) * (list absExp))) i :=
match x with
| Some (p,tl1,tl2) => Some (p,AbsFun i tl1,AbsFun i tl2)
| None => None
end.
Fixpoint push_pairs (l : list (nat * nat)) :=
match l with
| ((a,b)::r) => (((S a),(S b))::(push_pairs r))
| nil => ((0,0)::nil)
end.
Fixpoint match_expression (equivl : list (list absExp)) (equivr : list (list absExp)) (limit1 : nat) (limit2 : nat) (e1 : absExp) (e2 : absExp) (pairs : list (nat * nat)) : option ((list (nat * nat)) * absExp * absExp) :=
match (e1,e2) with
| (AbsConstVal v1,AbsConstVal v2) => if beq_val v1 v2 then Some (pairs,AbsConstVal v1,AbsConstVal v2) else None
| (AbsVar v1,AbsVar v2) => if beq_id v1 v2 then (Some (pairs,AbsVar v1, AbsVar v2)) else
match equiv_absExp (AbsVar v1) (AbsVar v2) equivl equivr with
| Some t => Some (pairs,t,t)
| None => None
end
| (AbsQVar v1,AbsQVar v2) => if ble_nat limit1 v1 then
if beq_nat v1 ((v2+limit1)-limit2) then Some (pairs,AbsQVar v1,AbsQVar v2) else None
else if mem_pair (v1,v2) pairs then
Some (pairs,AbsQVar v1,AbsQVar v2)
else if ble_nat limit2 v2 then
None
else if no_first v1 pairs then
if no_second v2 pairs then
Some ((v1,v2)::pairs,AbsQVar v1,AbsQVar v2)
else None
else None
| (AbsFun i1 el1,AbsFun i2 el2) => if beq_id i1 i2 then
funFix (pair_apply (match_expression equivl equivr limit1 limit2) pairs el1 el2) i1
else None
| (l,r) => match equiv_absExp l r equivl equivr with
| Some t => if noQVarExp t then Some (pairs,t,t) else None
| None => None
end
end.
(*
* Match two states if they are identical except for bound variable references as above for
* expressions
*
* Parameters:
* limit1 - bound variable upper limit for first expression
* limit2 - bound variable upper limit for second expression
* Bound variables in e1 and e2 may exceed limit1 and limit2 resp. However, then
* v1-limit1=v2-limit for the subterms to be equivalent. No pairing is done in this
* case.
* pairs - bound variables already paired up
* equivl - list of subexpressions in left (first exp) known to be equivalent
* equivr - list of subexpressions in right (second exp) known to be equivalent
* Subterms in this set are all treated as equal by the algorithm
* l - first state
* r - second state
* Returned:
* list of bound variable pairings.
*)
Definition build_leaf (x : option ((list (nat * nat)) * (list absExp) * (list absExp))) i :=
match x with
| Some (p,l1,l2) => Some (p,AbsLeaf i l1,AbsLeaf i l2)
| None => None
end.
(*Definition build_acc {ev} {eq} {f} {t} {ac} i
(el : option ((list (nat * nat)) * (list (@absExp ev eq f)) * (list (@absExp ev eq f))))
ii
(el : option ((list (nat * nat)) * (list (@absExp ev eq f)) * (list (@absExp ev eq f))))*)
Fixpoint match_state (limit1 : nat) (limit2 : nat) (pairs : list (nat * nat)) (equivl : list (list absExp)) (equivr : list (list absExp)) (l : absState) (r : absState) : option ((list (nat * nat)) * absState * absState) :=
match (l,r) with
| (AbsStar l1 l2,AbsStar r1 r2) => match match_state limit1 limit2 pairs equivl equivr l1 r1 with
| Some (p,tl1,tr1) => match match_state limit1 limit2 p equivl equivr l2 r2 with
| Some (p,tl2,tr2) => Some (p,AbsStar tl1 tl2,AbsStar tr1 tr2)
| None => None
end
| None => None
end
| (AbsOrStar l1 l2,AbsOrStar r1 r2) => match match_state limit1 limit2 pairs equivl equivr l1 r1 with
| Some (p,tl1,tr1) => match match_state limit1 limit2 p equivl equivr l2 r2 with
| Some (p,tl2,tr2) => Some (p,AbsOrStar tl1 tl2,AbsOrStar tr1 tr2)
| None => None
end
| None => None
end
| (AbsEmpty,AbsEmpty) => Some (pairs,AbsEmpty,AbsEmpty)
| (AbsExists e1 s1,AbsExists e2 s2) => match match_expression equivl equivr limit1 limit2 e1 e2 pairs with
| Some (r,re1,re2) => match match_state (limit1+1) (limit2+1) (push_pairs r) equivl equivr s1 s2 with
| Some (p,rs1,rs2) => Some (strip_pair limit1 limit2 p,AbsExists re1 rs1,AbsExists re2 rs2)
| None => None
end
| None => None
end
| (AbsAll e1 s1,AbsAll e2 s2) => match match_expression equivl equivr limit1 limit2 e1 e2 pairs with
| Some (r,re1,re2) => match match_state (limit1+1) (limit2+1) (push_pairs r) equivl equivr s1 s2 with
| Some (p,rs1,rs2) => Some (strip_pair limit1 limit2 p,AbsAll re1 rs1,AbsAll re2 rs2)
| None => None
end
| None => None
end
| (AbsEach e1 s1,AbsEach e2 s2) => match match_expression equivl equivr limit1 limit2 e1 e2 pairs with
| Some (r,re1,re2) => match match_state (limit1+1) (limit2+1) (push_pairs r) equivl equivr s1 s2 with
| Some (p,rs1,rs2) => Some (strip_pair limit1 limit2 p,AbsEach re1 rs1,AbsEach re2 rs2)
| None => None
end
| None => None
end
| (AbsExistsT s1,AbsExistsT s2) => match match_state (limit1+1) (limit2+1) (push_pairs pairs) equivl equivr s1 s2 with
| Some (p,rs1,rs2) => Some (strip_pair limit1 limit2 p,AbsExistsT rs1,AbsExistsT rs2)
| None => None
end
| (AbsLeaf i1 el1,AbsLeaf i2 el2) => if beq_id i1 i2 then
build_leaf (pair_apply (match_expression equivl equivr limit1 limit2) pairs el1 el2) i1
else None
| (AbsAccumulate i1 e1a e1b e1c,AbsAccumulate i2 e2a e2b e2c) =>
if beq_id i1 i2 then
match match_expression equivl equivr limit1 limit2 e1a e2a pairs with
| Some (p,re1a,re2a) => match match_expression equivl equivr limit1 limit2 e1b e2b p with
| Some (p,re1b,re2b) => match match_expression equivl equivr limit1 limit2 e1c e2c p with
| Some (p,re1c,re2c) => Some (p,AbsAccumulate i1 re1a re1b re1c,AbsAccumulate i2 re2a re2b re2c)
| None => None
end
| None => None
end
| None => None
end
else None
| _ => None
end.
(*
* match two expressions
*
* Determine whether two expressions are identical with the exception of bound variable references.
* If they are, then return the mapping between bound variable references in one to references in the
* other. This is the same as match_expression except that no new bound variable paris are added
* to 'pairs'
*
* Parameters:
* equivl - list of subexpressions in left (first exp) known to be equivalent
* equivr - list of subexpressions in right (second exp) known to be equivalent
* Subterms in this set are all treated as equal by the algorithm
* limit1 - bound variable upper limit for first expression
* limit2 - bound variable upper limit for second expression
* Bound variables in e1 and e2 may exceed limit1 and limit2 resp. However, then
* v1-limit1=v2-limit for the subterms to be equivalent. No pairing is done in this
* case.
* e1 - first expression
* e2 - second expression
* pairs - bound variables already paired up
* Returned:
* list of bound variable pairings.
*)
Fixpoint match_expression_ni (equivl : list (list absExp)) (equivr : list (list absExp)) (limit1 : nat) (limit2 : nat) (e1 : absExp) (e2 : absExp) (pairs : list (nat * nat)) : option ((list (nat * nat)) * absExp * absExp) :=
match (e1,e2) with
| (AbsConstVal v1,AbsConstVal v2) => if beq_val v1 v2 then Some (pairs,AbsConstVal v1,AbsConstVal v2) else None
| (AbsVar v1,AbsVar v2) => if beq_id v1 v2 then (Some (pairs,AbsVar v1, AbsVar v2)) else
match equiv_absExp (AbsVar v1) (AbsVar v2) equivl equivr with
| Some t => Some (pairs,t,t)
| None => None
end
| (AbsQVar v1,AbsQVar v2) => if ble_nat limit1 v1 then
if beq_nat v1 ((v2+limit1)-limit2) then Some (pairs,AbsQVar v1,AbsQVar v2) else None
else if mem_pair (v1,v2) pairs then
Some (pairs,AbsQVar v1,AbsQVar v2)
else if ble_nat limit2 v2 then
None
else None
| (AbsFun i1 el1,AbsFun i2 el2) => if beq_id i1 i2 then
funFix (pair_apply (match_expression_ni equivl equivr limit1 limit2) pairs el1 el2) i1
else None
| (l,r) => match equiv_absExp l r equivl equivr with
| Some t => if noQVarExp t then Some (pairs,t,t) else None
| None => None
end
end.
(*
* Match two states if they are identical except for bound variable references (but without adding new
* pairs) as above for expressions
*
* Parameters:
* limit1 - bound variable upper limit for first expression
* limit2 - bound variable upper limit for second expression
* Bound variables in e1 and e2 may exceed limit1 and limit2 resp. However, then
* v1-limit1=v2-limit for the subterms to be equivalent. No pairing is done in this
* case.
* pairs - bound variables already paired up
* equivl - list of subexpressions in left (first exp) known to be equivalent
* equivr - list of subexpressions in right (second exp) known to be equivalent
* Subterms in this set are all treated as equal by the algorithm
* l - first state
* r - second state
* Returned:
* list of bound variable pairings.
*)
Fixpoint match_state_ni (limit1 : nat) (limit2 : nat) (pairs : list (nat * nat)) (equivl : list (list absExp)) (equivr : list (list absExp)) (l : absState) (r : absState) : option ((list (nat * nat)) * absState * absState) :=
match (l,r) with
| (AbsStar l1 l2,AbsStar r1 r2) => match match_state_ni limit1 limit2 pairs equivl equivr l1 r1 with
| Some (p,tl1,tr1) => match match_state_ni limit1 limit2 p equivl equivr l2 r2 with
| Some (p,tl2,tr2) => Some (p,AbsStar tl1 tl2,AbsStar tr1 tr2)
| None => None
end
| None => None
end
| (AbsOrStar l1 l2,AbsOrStar r1 r2) => match match_state_ni limit1 limit2 pairs equivl equivr l1 r1 with
| Some (p,tl1,tr1) => match match_state_ni limit1 limit2 p equivl equivr l2 r2 with
| Some (p,tl2,tr2) => Some (p,AbsOrStar tl1 tl2,AbsOrStar tr1 tr2)
| None => None
end
| None => None
end
| (AbsEmpty,AbsEmpty) => Some (pairs,AbsEmpty,AbsEmpty)
| (AbsExists e1 s1,AbsExists e2 s2) => match match_expression_ni equivl equivr limit1 limit2 e1 e2 pairs with
| Some (r,re1,re2) => match match_state_ni (limit1+1) (limit2+1) (push_pairs r) equivl equivr s1 s2 with
| Some (p, rs1, rs2) => Some (strip_pair limit1 limit2 p,AbsExists re1 rs1,AbsExists re2 rs2)
| None => None
end
| None => None
end
| (AbsAll e1 s1,AbsAll e2 s2) => match match_expression_ni equivl equivr limit1 limit2 e1 e2 pairs with
| Some (r,re1,re2) => match match_state_ni (limit1+1) (limit2+1) (push_pairs r) equivl equivr s1 s2 with
| Some (p,rs1,rs2) => Some (strip_pair limit1 limit2 p,AbsAll re1 rs1,AbsAll re2 rs2)
| None => None
end
| None => None
end
| (AbsEach e1 s1,AbsEach e2 s2) => match match_expression_ni equivl equivr limit1 limit2 e1 e2 pairs with
| Some (r,re1,re2) => match match_state_ni (limit1+1) (limit2+1) (push_pairs r) equivl equivr s1 s2 with
| Some (p,rs1,rs2) => Some (strip_pair limit1 limit2 p,AbsEach re1 rs1,AbsEach re2 rs2)
| None => None
end
| None => None
end
| (AbsExistsT s1,AbsExistsT s2) => match match_state_ni (limit1+1) (limit2+1) (push_pairs pairs) equivl equivr s1 s2 with
| Some (p,rs1,rs2) => Some (strip_pair limit1 limit2 p, AbsExistsT rs1, AbsExistsT rs2)
| None => None
end
| (AbsLeaf i1 el1,AbsLeaf i2 el2) => if beq_id i1 i2 then
build_leaf (pair_apply (match_expression_ni equivl equivr limit1 limit2) pairs el1 el2) i1
else None
| (AbsAccumulate i1 e1a e1b e1c,AbsAccumulate i2 e2a e2b e2c) =>
if beq_id i1 i2 then
match match_expression_ni equivl equivr limit1 limit2 e1a e2a pairs with
| Some (p,re1a,re2a) => match match_expression_ni equivl equivr limit1 limit2 e1b e2b p with
| Some (p,re1b,re2b) => match match_expression_ni equivl equivr limit1 limit2 e1c e2c p with
| Some (p,re1c,re2c) => Some (p,AbsAccumulate i1 re1a re1b re1c,AbsAccumulate i2 re2a re2b re2c)
| None => None
end
| None => None
end
| None => None
end
else None
| _ => None
end.
(*
* Pick a component out of a state
*
* Parameters:
* #1 : absState - input of the state to find the element in
* #2 : absState - output of the component
* #3 : absState - output of the original state where that component is
* replaced with EmptyFun
*)
Inductive spickElement : absState -> absState -> absState -> Prop :=
| PESComposeLeft : forall l r e l',
spickElement l e l' ->
spickElement (AbsStar l r) e (AbsStar l' r)
| PESComposeRight : forall l r e r',
spickElement r e r' ->
spickElement (AbsStar l r) e (AbsStar l r')
| PESAll : forall e p,
spickElement (AbsAll e p) (AbsAll e p) AbsEmpty
| PESEach : forall e p,
spickElement (AbsEach e p) (AbsEach e p) AbsEmpty
| PESR : forall i el,
spickElement (AbsLeaf i el) (AbsLeaf i el) AbsEmpty
| PESOR : forall l r,
spickElement (l *\/* r) (l *\/* r) AbsEmpty.
Ltac solveSPickElement :=
solve [(eapply PESComposeLeft;solveSPickElement) |
(eapply PESComposeRight;solveSPickElement) |
(eapply PESR) |
(eapply PESAll) |
(eapply PESEach) |
(eapply PESOR)].
(*
* Pick a component out of a state (not necessarily implied true by its position)
*
* Parameters:
* #1 : absState - input of the state to find the element in
* #2 : absState - output of the component
* #3 : absState - output of the original state where that component is
* replaced with EmptyFun
*)
Inductive fpickElement : absState -> absState -> absState -> Prop :=
| PEFComposeLeft : forall l r e l',
fpickElement l e l' ->
fpickElement (AbsStar l r) e (AbsStar l' r)
| PEFComposeRight : forall l r e r',
fpickElement r e r' ->
fpickElement (AbsStar l r) e (AbsStar l r')
| PEFUpdState1 : forall l m r e l',
fpickElement l e l' ->
fpickElement (AbsUpdState l m r) e (AbsUpdState l' m r)
| PEFUpdState2 : forall l m r e m',
fpickElement m e m' ->
fpickElement (AbsUpdState l m r) e (AbsUpdState l m' r)
| PEFUpdState3 : forall l m r e r',
fpickElement r e r' ->
fpickElement (AbsUpdState l m r) e (AbsUpdState l m r')
| PEFMagicWandLeft : forall l r e l',
fpickElement l e l' ->
fpickElement (AbsMagicWand l r) e (AbsMagicWand l' r)
| PEFMagicWandRight : forall l r e r',
fpickElement r e r' ->
fpickElement (AbsMagicWand l r) e (AbsMagicWand l r')
| PEFOrComposeLeft : forall l r e l',
fpickElement l e l' ->
fpickElement (AbsOrStar l r) e (AbsOrStar l' r)
| PEFOrComposeRight : forall l r e r',
fpickElement r e r' ->
fpickElement (AbsOrStar l r) e (AbsOrStar l r')
(*| PEFUpdateVar : forall i e s v s',
fpickElement s e s' ->
fpickElement (AbsUpdateVar s i v) e (AbsUpdateVar s' i v)
| PEFUpdateLoc : forall i e s v s',
fpickElement s e s' ->
fpickElement (AbsUpdateLoc s i v) e (AbsUpdateLoc s' i v)
| PEFUpdateWithLoc : forall i e s v s',
fpickElement s e s' ->
fpickElement (AbsUpdateWithLoc s i v) e (AbsUpdateWithLoc s' i v)*)
| PEFAll : forall e p,
fpickElement (AbsAll e p) (AbsAll e p) AbsEmpty
| PEFEach : forall e p,
fpickElement (AbsEach e p) (AbsEach e p) AbsEmpty
| PEFR : forall i el,
fpickElement (AbsLeaf i el) (AbsLeaf i el) AbsEmpty.
Ltac solveFPickElement :=
solve [(eapply PEFComposeLeft;solveFPickElement) |
(eapply PEFComposeRight;solveFPickElement) |
(eapply PEFMagicWandLeft;solveFPickElement) |
(eapply PEFMagicWandRight;solveFPickElement) |
(eapply PEFOrComposeLeft;solveFPickElement) |
(eapply PEFOrComposeRight;solveFPickElement) |
(eapply PEFUpdState1;solveFPickElement) |
(eapply PEFUpdState2;solveFPickElement) |
(eapply PEFUpdState3;solveFPickElement) |
(*(eapply PEFUpdateVar;solveFPickElement) |
(eapply PEFUpdateLoc;solveFPickElement) |
(eapply PEFUpdateWithLoc;solveFPickElement) |*)
(eapply PEFAll) |
(eapply PEFEach) |
(eapply PEFR)].
(*
* Pick a component out of a state
*
* Parameters:
* #1 : absState - input of the state to find the element in
* #2 : list (nat * nat) - bound variable mappings (used in match_state)
* #3 : nat - limit1 used in match_state
* #4 : nat - limit2 used in match_state
* #5 : list (list absExp) - equiv1 used in match_state
* #6 : list (list absExp) - equiv2 used in match_state
* #7 : absState - element to pick out
* #8 : absState - element picked out (with bound variables mapped over)
* #9 : absState - remainder of term (with picked out element removed)
* #10 : list (list nat) - returned pairs (with additional pairs from match_state)
*)
Inductive pickElement : absState -> (list (nat * nat)) -> nat -> nat -> (list (list absExp)) -> (list (list absExp)) -> absState -> absState -> absState -> (list (nat * nat)) -> Prop :=
| PEComposeLeft : forall l r e e' l' vars vars' limit1 limit2 eq1 eq2,
pickElement l vars limit1 limit2 eq1 eq2 e e' l' vars' ->
pickElement (AbsStar l r) vars limit1 limit2 eq1 eq2 e e' (AbsStar l' r) vars'
| PEComposeRight : forall l r e e' r' vars vars' limit1 limit2 eq1 eq2,
pickElement r vars limit1 limit2 eq1 eq2 e e' r' vars' ->
pickElement (AbsStar l r) vars limit1 limit2 eq1 eq2 e e' (AbsStar l r') vars'
(*| PEAll : forall i l s,
pickElement (AbsAll i l s) (AbsAll t s) AbsEmpty*)
| PER : forall i l l' vars vars' limit1 limit2 eq1 eq2 tl tl',
Some (vars',tl,tl') = pair_apply (match_expression limit1 limit2 eq1 eq2) vars l l' ->
pickElement (AbsLeaf i l') vars eq1 eq2 limit1 limit2 (AbsLeaf i l) (AbsLeaf i tl') AbsEmpty vars'.
Ltac solvePickElement :=
solve [(eapply PEComposeLeft;solvePickElement) |
(eapply PEComposeRight;solvePickElement) |
(eapply PER;simpl;reflexivity)].
(*
* Pick a component out of a state (Same as above except that the first
* argument in an AbsLeaf match uses pick_element_ni so as not to add pairs
*
* Parameters:
* #1 : absState - input of the state to find the element in
* #2 : list (nat * nat) - bound variable mappings (used in match_state)
* #3 : nat - limit1 used in match_state
* #4 : nat - limit2 used in match_state
* #5 : list (list absExp) - equiv1 used in match_state
* #6 : list (list absExp) - equiv2 used in match_state
* #7 : absState - element to pick out
* #8 : absState - element picked out (with bound variables mapped over)
* #9 : absState - remainder of term (with picked out element removed)
* #10 : list (list nat) - returned pairs (with additional pairs from match_state)
*)
Inductive pickElementNi : absState -> (list (nat * nat)) -> nat -> nat -> (list (list absExp)) -> (list (list absExp)) -> absState -> absState -> absState -> (list (nat * nat)) -> Prop :=
| PEComposeLeftNi : forall l r e e' l' vars vars' limit1 limit2 eq1 eq2,
pickElementNi l vars limit1 limit2 eq1 eq2 e e' l' vars' ->
pickElementNi (AbsStar l r) vars limit1 limit2 eq1 eq2 e e' (AbsStar l' r) vars'
| PEComposeRightNi : forall l r e e' r' vars vars' limit1 limit2 eq1 eq2,
pickElementNi r vars limit1 limit2 eq1 eq2 e e' r' vars' ->
pickElementNi (AbsStar l r) vars limit1 limit2 eq1 eq2 e e' (AbsStar l r') vars'
(*| PEPredicateNi : forall P P' vars vars' limit1 limit2 eq1 eq2,
Some vars' = match_expression P P' limit1 limit2 vars eq1 eq2 ->
pickElementNi (AbsPredicate P') vars limit1 limit2 eq1 eq2 (AbsPredicate P) (AbsPredicate P') AbsEmpty vars'
| PEExists : forall t s vars vars' vars'' limit1 limit2,
pickElement (AbsExists t s) (AbsExists t s) AbsEmpty*)
| PEAllNi : forall tt s tt' s' vars eq1 eq2 limit1 limit2 vars' vars'' vars''' ttl ttl' sl sl',
Some (vars',ttl,ttl') = match_expression_ni eq1 eq2 limit1 limit2 tt tt' vars ->
Some (vars'',sl,sl') = match_state_ni (limit1+1) (limit2+1) ((limit1,limit2)::vars) eq1 eq2 s s' ->
vars''' = strip_pair limit1 limit2 vars'' ->
pickElementNi (AbsAll tt' s') vars limit1 limit2 eq1 eq2 (AbsAll tt s) (AbsAll ttl' sl') AbsEmpty vars'''
| PEExistsNi : forall tt s tt' s' vars eq1 eq2 limit1 limit2 vars' vars'' vars''' ttl ttl' sl sl',
Some (vars',ttl,ttl') = match_expression_ni eq1 eq2 limit1 limit2 tt tt' vars ->
Some (vars'',sl,sl') = match_state_ni (limit1+1) (limit2+1) ((limit1,limit2)::vars) eq1 eq2 s s' ->
vars''' = strip_pair limit1 limit2 vars'' ->
pickElementNi (AbsExists tt' s') vars limit1 limit2 eq1 eq2 (AbsExists tt s) (AbsExists ttl' sl') AbsEmpty vars'''
| PEEachNi : forall tt s tt' s' vars eq1 eq2 limit1 limit2 vars' vars'' vars''' ttl ttl' sl sl',
Some (vars',ttl,ttl') = match_expression_ni eq1 eq2 limit1 limit2 tt tt' vars ->
Some (vars'',sl,sl') = match_state_ni (limit1+1) (limit2+1) ((limit1,limit2)::vars) eq1 eq2 s s' ->
vars''' = strip_pair limit1 limit2 vars'' ->
pickElementNi (AbsEach tt' s') vars limit1 limit2 eq1 eq2 (AbsEach tt s) (AbsEach ttl' sl') AbsEmpty vars'''
| PERNi : forall r r' i h h' vars vars' vars'' limit1 limit2 eq1 eq2 rl rl' hl hl' eqq1 eqq2,
match (AbsLeaf i (r::h)) with
| [a====b] => (nil,nil)
| _ => (limit1,limit2)
end = (eqq1,eqq2) ->
Some (vars',rl,rl') = match_expression_ni eqq1 eqq2 eq1 eq2 r r' vars ->
Some (vars'',hl,hl') = pair_apply (match_expression limit1 limit2 eq1 eq2) vars' h h' ->
pickElementNi (AbsLeaf i (r'::h')) vars eq1 eq2 limit1 limit2 (AbsLeaf i (r::h)) (AbsLeaf i (rl'::hl')) AbsEmpty vars''.
(*| PECellNi : forall l v l' v' vars vars' vars'' limit1 limit2 eq1 eq2,
Some vars' = match_expression_ni l l' limit1 limit2 vars eq1 eq2->
Some vars'' = match_expression v v' limit1 limit2 vars' eq1 eq2 ->
pickElementNi (AbsCell l' v') vars limit1 limit2 eq1 eq2 (AbsCell l v) (AbsCell l' v') AbsEmpty vars''.*)
Ltac solvePickElementNi :=
solve [(eapply PEComposeLeftNi;solvePickElementNi) |
(eapply PEComposeRightNi;solvePickElementNi) |
((eapply PEAllNi);[ (simpl;reflexivity) | (simpl;reflexivity) | (simpl;reflexivity)]) |
((eapply PEExistsNi);[ (simpl;reflexivity) | (simpl;reflexivity) | (simpl;reflexivity)]) |
((eapply PEEachNi);[ (simpl;reflexivity) | (simpl;reflexivity) | (simpl;reflexivity)]) |
((eapply PERNi);[ (simpl;reflexivity) | (simpl;reflexivity) | (simpl;reflexivity) ]) ].
(*
* Pick out two AbsLeaf terms from two AbsState assertions that match.
*
* Parameters:
* #1 : absState - first state to pick an element out of
* #2 : absState - second state to pick an element out of
* #3 : list (nat * nat) - bound variable mappings (used in match_state)
* #4 : limit1 - limit1 for match_state
* #5 : limit2 - limit2 for match_state
* #6 : list (list absExp) - equiv1 used in match_state
* #7 : list (list absExp) - equiv2 used in match_state
* #8 : id - i parameter of the two AbsLeaf parameters picked out
* #9 : list (absExp) - list of absExp terms of absLeaf picked out of first state
* #10 : list (absExp) - list of absExp terms of absLeaf picked out of second state
* #11 : absState - remainder of first term (with picked out element removed)
* #12 : absState - remainder of second term (with picked out element removed)
* #13 : list (list nat) - returned pairs (with additional pairs from match_state)
*)
Inductive pick2Rs : absState ->
absState ->
list (nat * nat) -> nat -> nat ->
list (list absExp) ->
list (list absExp) ->
id ->
list absExp ->
list absExp ->
absState ->
absState ->
list (nat * nat) -> Prop :=
| P2RComposeFirstLeft : forall a r b c d e ff g h i j k l m,
pick2Rs a b c d e ff g h i j k l m ->
pick2Rs (AbsStar a r) b c d e ff g h i j (AbsStar k r) l m
| P2RComposeFirstRight : forall ll a b c d e ff g h i j k l m,
pick2Rs a b c d e ff g h i j k l m ->
pick2Rs (AbsStar ll a) b c d e ff g h i j (AbsStar ll k) l m
| P2RPick: forall i l1 l2 b b' vars vars' limit1 limit2 eq1 eq2,
pickElement b vars limit1 limit2 eq1 eq2 (AbsLeaf i l1) (AbsLeaf i l2) b' vars' ->
pick2Rs (AbsLeaf i l1) b vars limit1 limit2 eq1 eq2 i l1 l2 AbsEmpty b' vars'.
Ltac solvePick2Rs :=
solve [ (apply P2RComposeFirstLeft;solvePick2Rs) ||
(apply P2RComposeFirstRight;solvePick2Rs) ||
(apply P2RPick;solvePickElement) ].
(*
* Pick out two AbsLeaf (or AbsAll) terms from two AbsState assertions that match. Note
* that pickElementNi is used to cause no pairs to be added for either AbsAll or the first
* parameter given to AbsTree
*
* Parameters:
* #1 : absState - first state to pick an element out of
* #2 : absState - second state to pick an element out of
* #3 : list (nat * nat) - bound variable mappings (used in match_state)
* #4 : limit1 - limit1 for match_state
* #5 : limit2 - limit2 for match_state
* #6 : list (list absExp) - equiv1 used in match_state
* #7 : list (list absExp) - equiv2 used in match_state
* #8 : absExp - term picked out of first state
* #9 : absExp - term picked out of second state
* #10 : absState - remainder of first term (with picked out element removed)
* #11 : absState - remainder of second term (with picked out element removed)
* #12 : list (list nat) - returned pairs (with additional pairs from match_state)
*)
Inductive pick2RsNi : absState ->
absState ->
list (nat * nat) -> nat -> nat ->
list (list absExp) ->
list (list absExp) ->
absState ->
absState ->
absState ->
absState ->
list (nat * nat) -> Prop :=
| P2RComposeFirstLeftNi : forall a r b c d e g h i j k l m,
pick2RsNi a b c d e g h i j k l m ->
pick2RsNi (AbsStar a r) b c d e g h i j (AbsStar k r) l m
| P2RComposeFirstRightNi : forall ll a b c d e g h i j k l m,
pick2RsNi a b c d e g h i j k l m ->
pick2RsNi (AbsStar ll a) b c d e g h i j (AbsStar ll k) l m
| P2RPickNi: forall i l1 l2 b b' vars vars' limit1 limit2 eq1 eq2,
pickElementNi b vars limit1 limit2 eq1 eq2 (AbsLeaf i l1) (AbsLeaf i l2) b' vars' ->
pick2RsNi (AbsLeaf i l1) b vars limit1 limit2 eq1 eq2 (AbsLeaf i l1) (AbsLeaf i l2) AbsEmpty b' vars'
| P2RPickNiAll: forall i l1 l2 b b' vars vars' limit1 limit2 eq1 eq2 i2,
pickElementNi b vars limit1 limit2 eq1 eq2 (AbsAll i l1) (AbsAll i2 l2) b' vars' ->
pick2RsNi (AbsAll i l1) b vars limit1 limit2 eq1 eq2 (AbsAll i l1) (AbsAll i2 l2) AbsEmpty b' vars'
| P2RPickNiExists: forall i l1 l2 b b' vars vars' limit1 limit2 eq1 eq2 i2,
pickElementNi b vars limit1 limit2 eq1 eq2 (AbsExists i l1) (AbsExists i2 l2) b' vars' ->
pick2RsNi (AbsExists i l1) b vars limit1 limit2 eq1 eq2 (AbsExists i l1) (AbsExists i2 l2) AbsEmpty b' vars'
| P2RPickNiEach: forall i l1 l2 b b' vars vars' limit1 limit2 eq1 eq2 i2,
pickElementNi b vars limit1 limit2 eq1 eq2 (AbsEach i l1) (AbsEach i2 l2) b' vars' ->
pick2RsNi (AbsEach i l1) b vars limit1 limit2 eq1 eq2 (AbsEach i l1) (AbsEach i2 l2) AbsEmpty b' vars'.
Ltac solvePick2RsNi :=
solve [ (apply P2RComposeFirstLeftNi;solvePick2RsNi) ||
(apply P2RComposeFirstRightNi;solvePick2RsNi) ||
(apply P2RPickNi;solvePickElementNi) ||
(eapply P2RPickNiAll;solvePickElementNi) ||
(eapply P2RPickNiExists;solvePickElementNi) ||
(eapply P2RPickNiEach;solvePickElementNi) ].
Fixpoint pickElementNiF
(x : absState) (r : absState)
(mapping : list (nat * nat)) (limit1 : nat) (limit2 : nat)
(equal_l : list (list absExp)) (equal_r : list (list absExp)) :
option (absState * absState *
absState *
absState * (list (nat * nat))) :=
match r with
| (a ** b) =>
match pickElementNiF x a mapping limit1 limit2 equal_l equal_r with
| Some (s1,s2,t1,t2,p) => Some (s1,s2**b,t1,t2,p)
| None =>
match pickElementNiF x b mapping limit1 limit2 equal_l equal_r with
| Some (s1,s2,t1,t2,p) => Some (s1,a**s2,t1,t2,p)
| None => None
end
end
| AbsEmpty => None
| (AbsLeaf i2 (f2::r2)) =>
match x with
| (AbsLeaf i1 (f1::r1)) =>
if beq_id i1 i2 then
match match_expression_ni equal_l equal_r limit1 limit2 f1 f2 mapping with
| None => None
| Some (pairs,ff1,ff2) =>
match (pair_apply (match_expression equal_l equal_r limit1 limit2) pairs r1 r2) with
| None => None
| Some (pairs,rr1,rr2) =>
match build_leaf (Some (pairs, (ff1::rr1), (ff2::rr2))) i1 with
| Some (p,t1,t2) => Some (AbsEmpty,AbsEmpty,t1,t2,pairs)
| None => None
end
end
end
else None
| _ => None
end
| y => match match_state_ni limit1 limit2 mapping equal_l equal_r x y with
| None => None
| Some (p,t1,t2) => Some (AbsEmpty,AbsEmpty,t1,t2,p)
end
end.
Fixpoint pickUpdateWithLocNiF
(x : absState) (r : absState)
(mapping : list (nat * nat)) (limit1 : nat) (limit2 : nat)
(equal_l : list (list absExp)) (equal_r : list (list absExp)) :
option (absState * absState *
absState *
absState * (list (nat * nat))) :=
match r with
| (a ** b) =>
match pickUpdateWithLocNiF x a mapping limit1 limit2 equal_l equal_r with
| Some (s1,s2,t1,t2,p) => Some (s1,s2**b,t1,t2,p)
| None =>
match pickUpdateWithLocNiF x b mapping limit1 limit2 equal_l equal_r with
| Some (s1,s2,t1,t2,p) => Some (s1,a**s2,t1,t2,p)
| None => None
end
end
| AbsEmpty => None
| (AbsUpdateWithLoc s2 i2 f2) =>
match x with
| (AbsUpdateWithLoc s1 i1 f1) =>
if beq_id i1 i2 then
match match_expression_ni equal_l equal_r limit1 limit2 f1 f2 mapping with
| None => None
| Some (pairs,ff1,ff2) =>
Some (AbsEmpty,AbsEmpty,AbsUpdateWithLoc s1 i1 f1,AbsUpdateWithLoc s2 i2 f2,pairs)
end
else None
| _ => None
end
| y => None
end.
Fixpoint pick2UpdateWithLocsNiF
(l : absState) (r : absState)
(mapping : list (nat * nat)) (limit1 : nat) (limit2 : nat)
(equal_l : list (list absExp)) (equal_r : list (list absExp)) :
option (absState * absState * absState *
absState * (list (nat * nat))) :=
match l with
| (a ** b) =>
match pick2UpdateWithLocsNiF a r mapping limit1 limit2 equal_l equal_r with
| Some (s1,s2,t1,t2,p) => Some (s1**b,s2,t1,t2,p)
| None => match pick2UpdateWithLocsNiF b r mapping limit1 limit2 equal_l equal_r with
| Some (s1,s2,t1,t2,p) => Some (a**s1,s2,t1,t2,p)
| None => None
end
end
| AbsEmpty => None
| x => pickUpdateWithLocNiF x r mapping limit1 limit2 equal_l equal_r
end.
Fixpoint pick2RsNiF
(l : absState) (r : absState)
(mapping : list (nat * nat)) (limit1 : nat) (limit2 : nat)
(equal_l : list (list absExp)) (equal_r : list (list absExp)) :
option (absState * absState * absState *
absState * (list (nat * nat))) :=
match l with
| (a ** b) =>
match pick2RsNiF a r mapping limit1 limit2 equal_l equal_r with
| Some (s1,s2,t1,t2,p) => Some (s1**b,s2,t1,t2,p)
| None => match pick2RsNiF b r mapping limit1 limit2 equal_l equal_r with
| Some (s1,s2,t1,t2,p) => Some (a**s1,s2,t1,t2,p)
| None => None
end
end
| AbsEmpty => None
| x => pickElementNiF x r mapping limit1 limit2 equal_l equal_r
end.
(*
* Test whether an absState has only predicates left--nothing allocating heap space
*)
Inductive allPredicates : absState -> Prop :=
| APCompose : forall a b,
allPredicates a ->
allPredicates b ->
allPredicates (a ** b)
| APOrCompose : forall a b,
allPredicates a ->
allPredicates b ->
allPredicates (a *\/* b)
| APPredicate : forall p, allPredicates ([p])
| APPath : forall a b c d e, allPredicates (Path(a,b,c,d,e))
| APEmpty : allPredicates AbsEmpty
| APAccumulate : forall i a b c, allPredicates (AbsAccumulate i a b c)
| APAll : forall ttt p,
allPredicates p ->
allPredicates (AbsAll ttt p)
| APExistsT : forall p,
allPredicates p ->
allPredicates (AbsExistsT p)
| APExists : forall ttt p,
allPredicates p ->
allPredicates (AbsExists ttt p)
| APEach : forall ttt p,
allPredicates p ->
allPredicates (AbsEach ttt p).
Ltac solveAllPredicates := repeat (eapply APCompose || eapply APOrCompose || eapply APEmpty || eapply APAll || eapply APExists || eapply APPath || eapply APExistsT || eapply APAccumulate ||eapply APPredicate || eapply APEach).
Fixpoint remove_top_existentials (s : absState) : (absState * nat) :=
match s with
| AbsExists l s' => match remove_top_existentials s' with
| (s,ln) => (s,(S ln))
end
| AbsExistsT s' => match remove_top_existentials s' with
| (s,ln) => (s,(S ln))
end
| _ => (s,0)
end.
Fixpoint restore_top_existentials (s : absState) (n : nat) : absState :=
match n with
| 0 => s
| S n1 => AbsExistsT (restore_top_existentials s n1)
end.