forked from Kovner/InventoryManagement
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathInventoryManagement.twb
2268 lines (2267 loc) · 167 KB
/
InventoryManagement.twb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<?xml version='1.0' encoding='utf-8' ?>
<!-- build main.18.0208.2310 -->
<workbook original-version='18.1' source-build='0.0.0 (0000.18.0208.2310)' source-platform='mac' version='18.1' xmlns:user='http://www.tableausoftware.com/xml/user'>
<document-format-change-manifest>
<SortTagCleanup />
</document-format-change-manifest>
<preferences>
<preference name='ui.encoding.shelf.height' value='24' />
<preference name='ui.shelf.height' value='26' />
</preferences>
<datasources>
<datasource caption='Product Inventory (Product Inventory)' inline='true' name='federated.0lqtop81637q3w10ji53e1i8tvza' version='18.1'>
<connection class='federated'>
<named-connections>
<named-connection caption='Product Inventory' name='excel-direct.1besh0q0wmkzt81c6ih5i0nlq53a'>
<connection class='excel-direct' cleaning='no' compat='no' dataRefreshTime='' filename='/Users/mkovner/Dropbox/Coding/Extensions/ExtensionsSamples/Inventory Management/Product Inventory.xlsx' interpretationMode='0' password='' server='' validate='no' />
</named-connection>
</named-connections>
<relation connection='excel-direct.1besh0q0wmkzt81c6ih5i0nlq53a' name='Product Inventory' table='['Product Inventory$']' type='table'>
<columns gridOrigin='A1:E45:no:A1:E45:0' header='yes' outcome='6'>
<column datatype='integer' name='RowID' ordinal='0' />
<column datatype='string' name='Product Name' ordinal='1' />
<column datatype='integer' name='Sales' ordinal='2' />
<column datatype='integer' name='Stock' ordinal='3' />
<column datatype='integer' name='Ordered' ordinal='4' />
</columns>
</relation>
<metadata-records>
<metadata-record class='column'>
<remote-name>RowID</remote-name>
<remote-type>20</remote-type>
<local-name>[RowID]</local-name>
<parent-name>[Product Inventory]</parent-name>
<remote-alias>RowID</remote-alias>
<ordinal>0</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='string' name='DebugRemoteType'>"I8"</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>Product Name</remote-name>
<remote-type>130</remote-type>
<local-name>[Product Name]</local-name>
<parent-name>[Product Inventory]</parent-name>
<remote-alias>Product Name</remote-alias>
<ordinal>1</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<contains-null>true</contains-null>
<collation flag='1' name='LEN_RUS_S2' />
<attributes>
<attribute datatype='string' name='DebugRemoteType'>"WSTR"</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>Sales</remote-name>
<remote-type>20</remote-type>
<local-name>[Sales]</local-name>
<parent-name>[Product Inventory]</parent-name>
<remote-alias>Sales</remote-alias>
<ordinal>2</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='string' name='DebugRemoteType'>"I8"</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>Stock</remote-name>
<remote-type>20</remote-type>
<local-name>[Stock]</local-name>
<parent-name>[Product Inventory]</parent-name>
<remote-alias>Stock</remote-alias>
<ordinal>3</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='string' name='DebugRemoteType'>"I8"</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>Ordered</remote-name>
<remote-type>20</remote-type>
<local-name>[Ordered]</local-name>
<parent-name>[Product Inventory]</parent-name>
<remote-alias>Ordered</remote-alias>
<ordinal>4</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='string' name='DebugRemoteType'>"I8"</attribute>
</attributes>
</metadata-record>
<metadata-record class='capability'>
<remote-name />
<remote-type>0</remote-type>
<parent-name>[Product Inventory]</parent-name>
<remote-alias />
<aggregation>Count</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='integer' name='context'>0</attribute>
<attribute datatype='string' name='gridOrigin'>"A1:E45:no:A1:E45:0"</attribute>
<attribute datatype='boolean' name='header'>true</attribute>
<attribute datatype='integer' name='outcome'>6</attribute>
</attributes>
</metadata-record>
</metadata-records>
</connection>
<column datatype='integer' name='[Number of Records]' role='measure' type='quantitative' user:auto-column='numrec'>
<calculation class='tableau' formula='1' />
</column>
<column datatype='integer' name='[Ordered]' role='measure' type='quantitative' />
<column aggregation='Sum' datatype='integer' name='[RowID]' role='dimension' type='ordinal' />
<column datatype='integer' name='[Sales]' role='measure' type='quantitative' />
<column datatype='integer' name='[Stock]' role='measure' type='quantitative' />
<column-instance column='[Ordered]' derivation='Sum' name='[sum:Ordered:qk]' pivot='key' type='quantitative' />
<column-instance column='[Sales]' derivation='Sum' name='[sum:Sales:qk]' pivot='key' type='quantitative' />
<column-instance column='[Stock]' derivation='Sum' name='[sum:Stock:qk]' pivot='key' type='quantitative' />
<layout dim-ordering='alphabetic' dim-percentage='0.488558' measure-ordering='alphabetic' measure-percentage='0.511442' show-structure='true' />
<style>
<style-rule element='mark'>
<encoding attr='color' field='[:Measure Names]' type='palette'>
<map to='#4e79a7'>
<bucket>"[federated.0lqtop81637q3w10ji53e1i8tvza].[sum:Stock:qk]"</bucket>
</map>
<map to='#59a14f'>
<bucket>"[federated.0lqtop81637q3w10ji53e1i8tvza].[sum:Sales:qk]"</bucket>
</map>
<map to='#edc948'>
<bucket>"[federated.0lqtop81637q3w10ji53e1i8tvza].[sum:Ordered:qk]"</bucket>
</map>
</encoding>
</style-rule>
</style>
<semantic-values>
<semantic-value key='[Country].[Name]' value='"United States"' />
</semantic-values>
</datasource>
</datasources>
<worksheets>
<worksheet name='Inventory'>
<table>
<view>
<datasources>
<datasource caption='Product Inventory (Product Inventory)' name='federated.0lqtop81637q3w10ji53e1i8tvza' />
</datasources>
<datasource-dependencies datasource='federated.0lqtop81637q3w10ji53e1i8tvza'>
<column datatype='integer' name='[Ordered]' role='measure' type='quantitative' />
<column datatype='string' name='[Product Name]' role='dimension' type='nominal' />
<column aggregation='Sum' datatype='integer' name='[RowID]' role='dimension' type='ordinal' />
<column datatype='integer' name='[Sales]' role='measure' type='quantitative' />
<column datatype='integer' name='[Stock]' role='measure' type='quantitative' />
<column-instance column='[Product Name]' derivation='None' name='[none:Product Name:nk]' pivot='key' type='nominal' />
<column-instance column='[RowID]' derivation='None' name='[none:RowID:ok]' pivot='key' type='ordinal' />
<column-instance column='[Ordered]' derivation='Sum' name='[sum:Ordered:qk]' pivot='key' type='quantitative' />
<column-instance column='[Sales]' derivation='Sum' name='[sum:Sales:qk]' pivot='key' type='quantitative' />
<column-instance column='[Stock]' derivation='Sum' name='[sum:Stock:qk]' pivot='key' type='quantitative' />
</datasource-dependencies>
<filter class='categorical' column='[federated.0lqtop81637q3w10ji53e1i8tvza].[:Measure Names]'>
<groupfilter function='union' user:op='manual'>
<groupfilter function='member' level='[:Measure Names]' member='"[federated.0lqtop81637q3w10ji53e1i8tvza].[sum:Ordered:qk]"' />
<groupfilter function='member' level='[:Measure Names]' member='"[federated.0lqtop81637q3w10ji53e1i8tvza].[sum:Stock:qk]"' />
</groupfilter>
</filter>
<manual-sort column='[federated.0lqtop81637q3w10ji53e1i8tvza].[:Measure Names]' direction='ASC'>
<dictionary>
<bucket>"[federated.0lqtop81637q3w10ji53e1i8tvza].[sum:Ordered:qk]"</bucket>
<bucket>"[federated.0lqtop81637q3w10ji53e1i8tvza].[sum:Stock:qk]"</bucket>
</dictionary>
</manual-sort>
<computed-sort column='[federated.0lqtop81637q3w10ji53e1i8tvza].[none:Product Name:nk]' direction='DESC' using='[federated.0lqtop81637q3w10ji53e1i8tvza].[sum:Sales:qk]' />
<slices>
<column>[federated.0lqtop81637q3w10ji53e1i8tvza].[:Measure Names]</column>
</slices>
<aggregation value='true' />
</view>
<style>
<style-rule element='axis'>
<format attr='title' class='0' field='[federated.0lqtop81637q3w10ji53e1i8tvza].[Multiple Values]' scope='cols' value='Total Inventory' />
<format attr='auto-subtitle' class='0' field='[federated.0lqtop81637q3w10ji53e1i8tvza].[Multiple Values]' scope='cols' value='false' />
<format attr='subtitle' class='0' field='[federated.0lqtop81637q3w10ji53e1i8tvza].[Multiple Values]' scope='cols' value='Stock + Ordered' />
</style-rule>
<style-rule element='cell'>
<format attr='height' field='[federated.0lqtop81637q3w10ji53e1i8tvza].[none:Product Name:nk]' value='77' />
</style-rule>
<style-rule element='header'>
<format attr='width' field='[federated.0lqtop81637q3w10ji53e1i8tvza].[none:Product Name:nk]' value='360' />
</style-rule>
<style-rule element='label'>
<format attr='font-size' field='[federated.0lqtop81637q3w10ji53e1i8tvza].[none:Product Name:nk]' value='14' />
<format attr='text-align' field='[federated.0lqtop81637q3w10ji53e1i8tvza].[none:Product Name:nk]' value='left' />
</style-rule>
<style-rule element='refline'>
<format attr='fill-above' id='refline0' value='#00000000' />
<format attr='fill-below' id='refline0' value='#00000000' />
<format attr='text-orientation' id='refline0' value='-90' />
<format attr='vertical-align' id='refline0' value='top' />
<format attr='font-size' id='refline0' value='12' />
</style-rule>
<style-rule element='legend-title'>
<format attr='text-align' value='right' />
</style-rule>
<style-rule element='legend-title-text'>
<format attr='color' field='[federated.0lqtop81637q3w10ji53e1i8tvza].[:Measure Names]' value='' />
</style-rule>
</style>
<panes>
<pane selection-relaxation-option='selection-relaxation-allow'>
<view>
<breakdown value='auto' />
</view>
<mark class='Automatic' />
<encodings>
<color column='[federated.0lqtop81637q3w10ji53e1i8tvza].[:Measure Names]' />
<lod column='[federated.0lqtop81637q3w10ji53e1i8tvza].[none:RowID:ok]' />
</encodings>
<reference-line axis-column='[federated.0lqtop81637q3w10ji53e1i8tvza].[Multiple Values]' enable-instant-analytics='true' formula='constant' id='refline0' label='Minimum Stock' label-type='custom' scope='per-table' value='10.0' value-column='[federated.0lqtop81637q3w10ji53e1i8tvza].[Multiple Values]' z-order='1' />
<style>
<style-rule element='pane'>
<format attr='minheight' value='-1' />
<format attr='maxheight' value='-1' />
</style-rule>
</style>
</pane>
<pane id='1' selection-relaxation-option='selection-relaxation-allow' x-axis-name='[federated.0lqtop81637q3w10ji53e1i8tvza].[sum:Sales:qk]'>
<view>
<breakdown value='auto' />
</view>
<mark class='Automatic' />
<mark-sizing mark-sizing-setting='marks-scaling-off' />
<encodings>
<color column='[federated.0lqtop81637q3w10ji53e1i8tvza].[:Measure Names]' />
<lod column='[federated.0lqtop81637q3w10ji53e1i8tvza].[none:RowID:ok]' />
</encodings>
<style>
<style-rule element='mark'>
<format attr='size' value='1.6811602115631104' />
</style-rule>
</style>
</pane>
<pane id='2' selection-relaxation-option='selection-relaxation-allow' x-axis-name='[federated.0lqtop81637q3w10ji53e1i8tvza].[Multiple Values]'>
<view>
<breakdown value='auto' />
</view>
<mark class='Automatic' />
<mark-sizing mark-sizing-setting='marks-scaling-off' />
<encodings>
<color column='[federated.0lqtop81637q3w10ji53e1i8tvza].[:Measure Names]' />
<lod column='[federated.0lqtop81637q3w10ji53e1i8tvza].[none:RowID:ok]' />
<tooltip column='[federated.0lqtop81637q3w10ji53e1i8tvza].[sum:Stock:qk]' />
<tooltip column='[federated.0lqtop81637q3w10ji53e1i8tvza].[sum:Ordered:qk]' />
</encodings>
<style>
<style-rule element='mark'>
<format attr='size' value='1.6811602115631104' />
</style-rule>
</style>
</pane>
</panes>
<rows>[federated.0lqtop81637q3w10ji53e1i8tvza].[none:Product Name:nk]</rows>
<cols>([federated.0lqtop81637q3w10ji53e1i8tvza].[sum:Sales:qk] + [federated.0lqtop81637q3w10ji53e1i8tvza].[Multiple Values])</cols>
</table>
</worksheet>
</worksheets>
<dashboards>
<dashboard name='Dashboard 1'>
<style />
<size maxheight='1000' maxwidth='1200' minheight='1000' minwidth='1200' preset-index='15' sizing-mode='fixed' />
<zones>
<zone h='100000' id='2' type='layout-basic' w='100000' x='0' y='0'>
<zone h='94382' id='5' param='horz' type='layout-flow' w='98666' x='667' y='800'>
<zone h='94382' id='3' type='layout-basic' w='98666' x='667' y='800'>
<zone h='94382' id='1' name='Inventory' w='98666' x='667' y='800'>
<zone-style>
<format attr='border-color' value='#000000' />
<format attr='border-style' value='none' />
<format attr='border-width' value='0' />
<format attr='margin' value='4' />
</zone-style>
</zone>
</zone>
</zone>
<zone h='4018' id='6' name='Inventory' pane-specification-id='1' param='[federated.0lqtop81637q3w10ji53e1i8tvza].[:Measure Names]' type='color' w='44621' x='54712' y='95182'>
<zone-style>
<format attr='border-color' value='#000000' />
<format attr='border-style' value='none' />
<format attr='border-width' value='0' />
<format attr='margin' value='4' />
</zone-style>
</zone>
<zone h='4018' id='7' type='empty' w='54045' x='667' y='95182'>
<zone-style>
<format attr='border-color' value='#000000' />
<format attr='border-style' value='none' />
<format attr='border-width' value='0' />
<format attr='margin' value='4' />
</zone-style>
</zone>
<zone-style>
<format attr='border-color' value='#000000' />
<format attr='border-style' value='none' />
<format attr='border-width' value='0' />
<format attr='margin' value='8' />
</zone-style>
</zone>
</zones>
</dashboard>
</dashboards>
<windows source-height='30'>
<window class='worksheet' name='Inventory'>
<cards>
<edge name='left'>
<strip size='160'>
<card type='pages' />
<card type='filters' />
<card type='marks' />
<card type='measures' />
</strip>
</edge>
<edge name='top'>
<strip size='2147483647'>
<card type='columns' />
</strip>
<strip size='2147483647'>
<card type='rows' />
</strip>
<strip size='31'>
<card type='title' />
</strip>
</edge>
<edge name='right'>
<strip size='160'>
<card pane-specification-id='1' param='[federated.0lqtop81637q3w10ji53e1i8tvza].[:Measure Names]' type='color' />
</strip>
</edge>
</cards>
<viewpoint>
<highlight>
<color-one-way>
<field>[federated.0lqtop81637q3w10ji53e1i8tvza].[:Measure Names]</field>
<field>[federated.0lqtop81637q3w10ji53e1i8tvza].[none:Product Name:nk]</field>
<field>[federated.0lqtop81637q3w10ji53e1i8tvza].[none:RowID:ok]</field>
</color-one-way>
</highlight>
</viewpoint>
</window>
<window class='dashboard' maximized='true' name='Dashboard 1'>
<viewpoints>
<viewpoint name='Inventory'>
<highlight>
<color-one-way>
<field>[federated.0lqtop81637q3w10ji53e1i8tvza].[:Measure Names]</field>
</color-one-way>
</highlight>
</viewpoint>
</viewpoints>
<active id='-1' />
</window>
</windows>
<thumbnails>
<thumbnail height='384' name='Dashboard 1' width='384'>
iVBORw0KGgoAAAANSUhEUgAAAYAAAAGACAYAAACkx7W/AAAACXBIWXMAAA7DAAAOwwHHb6hk
AAAgAElEQVR4nOzdd3xV5f3A8c/d9+Zm750ACUmYIQQCyJIhshTBgWJxVX/apbY/Z/tztFpt
a12t1j0RB3sP2TOB7ITsQfbeyc3d9/fHhQxIICgINc/79Wpf5pznPOtcnu+Zz5HYbDYbgiAI
wqAjvdoVEARBEK4OEQAEQRAGKREABEEQBikRAARBEAYpEQAEQRAGKREABEEQBikRAARBEAYp
EQAEQRAGKREABEEQBikRAARBEAYpEQAEQRAGqQsGgNMFBVjETEGCIAg/SxcMAF+88zad1itf
iTffeefKFyIIgiD0MuBLQAUFedRUlLJl0wYOHT8JQFFuNp2m7ghRnJ+N0WIDbJw8dohvv1tD
UWkVAGZDB8VlFeRmprJ+7VqyC04DkH0qjZTkFE6ePMmJxDSsgMWkZ8/Obaxdt4Gqusbu7Usr
MBl0HDtyhNKSMqrrm7rKbq6vprK28Ud2hyAIwuAx4ADw8h//wPuff4Orhzc7v/2YY2lFpCbs
Y9fBRABsViMvv/o2UomENR+/wf7kPCLChvDa889QWNmIobGChx9+mN1HU/Dx9eavf/oj7SYr
dTXV6FpbKS8vp6KqGrDywtOPU9lqxMfDmWf+9w+U1bViaKzgw88/4w+P/JbkjBw6mit45Y33
u+r35XtvUd7Qcdk7SBAE4edKPtCEnsHDeO7ZJwGwNZfS0FzLDfMW8uxrn7FkzkRyTx5mxKSZ
yKVWDp7I5+33/4MU+NUv72TX7kPcM28Ek2fP57f/cx8AJ/ZuptVgYfqseazdsYdbbrkFgKaS
DIyuEay83f63I51s2b6fe26I4vDew7z70ceMDgsAbEjffZ/yBh3+zjZSS9r5dVTQ5e0dQRCE
n7EBBwA4/26wo08ojpY6qtsMbN+xh0UPPQVWA9Ulp/nzCy8AYDTqiY6b028e52pubMHPx6/r
b19PL3RZ+QDMWnzTmcEfQMLyWxexdtNWpg1RM3HmXPFIkyAIwiW4hADQt4VzZ7Jr+zaK22wM
93cFrPj6+/LYk8/i6qAEoK29Hdoq+83DYjRisYFMAj7BwZz6dCtW7kAKpGRm4uc3FACJpHcA
mThrIR8+8Dvqchz51VMv/dimCIIgDCoXCQD9HFNLQHJm3aRZ8/jnLTdz68PPd21z/wN38ttH
HiZ6zEgqSgqZd+uDTA3XnpOHBAkSAKaPCuXR/30Gb09v/vjM48wZF8hjjz9NsK8TeRXNvPHa
vdBQeH41ZGrmXz+a3RkNBHg4XEKzBUEQBMnl+CawrqMdpdoBuaw7YFjMJlrb2nFydum1vD+t
Lc3IlWocNGr7382NtHWa8Pf1QSLpf7v1X7yDMuQ6Fs2I/rHNEARBGFQuSwC4Oiz84/+eoczk
wOt/fQG5uAEgCIJwSf6LAwCYzWbk8h99G0MQBGFQ+q8OAIIgCMIPJy6cCIIgDFIiAAiCIAxS
IgAIgiAMUiIACIIgDFIiAAiCIAxSIgAIgiAMUiIACIIgDFIiAAiCIAxSIgAIgiAMUiIACIIg
DFIiAAiCIAxSIgAIgiAMUiIACIIgDFL9zqVcWdn/JxwFQRCE/35iOmhhUKisrMTf3/9qV6MX
g8GASqW62tXoRdRpYK7FOpnNZoBL+kaKuAQkCIIwSIkzAGFQ2JO8mxZZ49WuRi/X4hftRJ0G
5lqsk9VqBUAqtR/Xe2q9mRE264LbXFstEIQrJLsmk+N1h652NQThJxPlM+qiAUBcAhIEQRik
RAAQBEEYpEQAEARBGKREABAEQRikBn4T2NLJkX37Ka1vRuPoxZx5s3FSXtn40V6dT1Y9TBwV
fkXL6Skn8Qip+aXIlBrips/BU1JPSbOWqDDv3gmtHWxas5XwyfMYEexqX2YzkXBgD0VVzSg1
joyfPI1QX1dMHU3s3bOfpg4Djh4+TJs6FVetsiur5ppi9h06QYfBjF9oFLOnxiCxGTlx+CAF
pTVIlBqmz5pHgKcj2Azs27qBopoOwsdNYcb4KAAMrbVs2LKTDiNMmbOAqCDP89pWmHGSpDIj
ty+4rs+271v7EQHXryTCQ9nn+ivLzCdvfsrdjz3I1ShdEAajAY7gVr575zWyGmHa9Bl4O1pp
0luvbM0ApYMTSpn6ipdzVtK+71izN4txk6cxMsSbpppWOusKyC5oOC9tXV4iqXmF7DuS0LXs
2PavOF5iYMq0aYT6OpKUeQqwsvr9t+l09GXatCk40kJWdo+3rC0N/Pud1fgMHcUNs6dx+tg2
9qVVcWjTatIqDUydPZdRQc78573VWIBDGz8nq9WNpbfMJ3HHKo7nNQBmvvj3W7gOjWX+tDGs
eu9N6s/bPzYO7d5J9om9nG4199n+lo5GTNar9VSwjcbaJiRXqXRBGIwGdAbQUZ5GmjWEl+5Y
gAQICggAICf1KEdPpKMzWhk2ZjILpsdg0dWwdV8i7XUVVNS1ETNzHnMmjqK9rpQ16zZR3aIn
cvx0lsyJw9pP2rMMbfXoDPYqpsbvobC6idL8YpyCIxniYiI9oxBH/9Hcu2I+7WV5bN93mIYW
HW4+w1h26wIcZNBYnsvWXQdp1VvxcHdnwW2342xtZcM3a8gpryUwMo67ls5Cbm1n2/eZ/PaF
F3FTSSA0CICG7Kw+++REUgrz736QPR9/TId1Hlop1NTVMWnGzYQEuRESFMh4AEzUVptZ/OtJ
uKukBAaF9M5I5s7Tzz2DXG6PxaMjQ6hoauWmRb9gulwGgM1tPN9tScOChZSUCu597iFc5HDv
rfP5KjGBib4RlDuN4MHJIwCYNyGFEyllLJjcXZappYhy5TCWTleQcCKH0Dn2fm6uKmTLjn20
6C00VFYxHEg+vB3v6LkEOinA2sHaDcdYumA86zfvoLq2AZWjG/NvXkaguwOp8XuobNZTkJ2L
VOPO8pUr8XSQkRa/l/ikHBSOriy6dTleio7z+xwoTD3OvuPJWGRyqnQD+TUKgnC5DOgMoK60
nOiI6POOzpQqZxbd9gseun8FJcfWkd9kwtrZSFJmLnFzl/Lor1dy/EACYGb1hx8TMXMZT/3+
1+iz9rAntbyftN2MrXXkFlUBUJSbioN3BL95/DEUFYkYnML41eOPoWo4SUmLGalMTuz1i3jk
kYfwMpew51gBNn0jb/1nFaNnLOShX96DpakEow32bVqNNWg8zz77BF7t6ew6XoilvQ710NH2
wf9iLO2k5pgYO8SLcSO0JObbXzCaPHkW69/5K59/vY6cktoziRXMmjeGV55/nnWbd1Pb0nFO
ZpIzg7+VhH3r2JhUwfWTwpGfGfzb6kt5/Z+vE7twLkpLG+3aUFzOhG23oGBMBh3tdbWEBnRP
czAkwAt9a+/R9FTCSUaNiSEqNpbM1CRsAKZW3n33c6Km3cgv71/JUH8PbIDSpOPw8VMAVGed
oN4sRSKVMiQilocefoTZYzxZs/X7rv1iUHrxy1//jrFekFLQQF3OYdYfyGfZPQ8wf1oscmnf
fd5Wmc5nm45y4613s/LOZbiJaz+C8JP6URfxnRzlHNyxkS9Xr6NWZ8Fgtl92GDJ8NGGBnqi0
rrgopGBqotYhjCmR/kgVDiy66QZKi3L7TtsvJbETxqCQK3Hy8GTCxLGo5EocXdTojRbUTk7k
njzAF59/SUFVLWajCWNrOf7R1zEuLAClSoOD1j53R1lxKSraOHz4ODaVI1VVpwEY6EWt2pyT
SPw8KcnNxcXBg/SkeAB8I8bz15deYESAG9s+e5vPttmXj599Gy889RvcFDrefvlFjmdW9MrP
2tnER6+9zNECeOaZJ3FT2/shN2kfr7z2IVMW/5KbrxsLSHrvMJsNKyCR9Q5a51/EsZKckoib
MxTVmHGpTuN0qwl9YzEuoyYTGx6EWu2A9sx9iahJ15F7IgELEH/yJJOmxiFRauiszeWrL79g
X2Iheoupa79MnRaHg1KBp7MLSCVk5hQw+5bb8XRU4zc0AneNrM8+L07LYdKi5QR5ueDg5IJa
vJYoCD+pAQUAr+BAUnNTew8sNh2ffvQNY6fewMqV9zAl+gI3aiUSTHpj158mgx7pZX4AafO3
H6MJGMuKX6zkjvlTwAQSqYz2Dn1XGumZcVKCFblKg0ajwXtYNDNjRyNz9MJYlEaD4eLXwE8m
p+Hj5kxWdja1qKk7lUrHmeghV2uZMH0Wf/jjk5TF2wdRAK2bD7PmL+Gp3y4nITWpR25Wvvvg
LVxjFvL7h5bhrLYf+TcVneTLzSd47Nk/MXlMqD2pzBGtroTmM2NvQ0kxapUWrZsPxaXdQaW4
vAaNq7brb1NzMcV6T1pKcsg6dQqvIT4knsjBZrUhk3QHj7P/JXPwY4RXEzmVVaRXOjM6wJHM
fZvIaNJw2/IV3HvPbThcoH9kNikGg7HXsr763GqzIZGIB9EE4WoZ0L8+beAYxkiK+c/qrRSX
nObQ7q2UNBswWaXIZTby048Tn5zdNYCcdyQt9yDCoZSNB5Koryll1bpdRI4e03faHmznrLzQ
0GwxWpBpFdSV5rF+VzwoQOkxDFVZIh+tXsu6bz7nQHwJAMNHRpCTU4GPvz8SYxsFJYUgdWTh
nJG8++aHZOUXkxp/iOS0MkBKTUUeycnJJCclUdtUR0qekRXLl7FkyRKWLFlK3AhHEvPq2LXh
c3YdOEZJaQn7d26BgABkGPny7Xc4lphOyekCtmzdjX9gcHe9m4s5WqYmzF1qLyM5iYraFo4c
O0rYiAmUF5yyL0/LxoqM8bGBfLZqK9UVxXyy9nviJk9C5hJMiCmXTQeTKc6OZ/eJEuKig7rK
yDyRwLgZN3PzkiUsWbKEu+6+jbSURFQeoVSlHOT4qSKKs5PIKazt2mbqpAl88957RE6chAww
mC0olXI62+rYtm4j3WH1/P0SHTuWQxs+41TBaRKPHqSs1dRnn4dGDeXwti8pKK8m6dgBqnUX
3seCIFxeshdeeOGFiyeTMmpCHMa6UrLzi7Gp3RgxPJLhflpOnEyiyaxh0sRx+PoFoFVIkSmd
8fW0PxoplUoICPQjanQ0RWmJZOaXMHLKAqaMDLRXoI+0Z8nVamQqR/y83AA53n7+KCQgkcjw
9PHH/hSqlMDAECKGhZBx4gRldc1MmDwJL09fvNxdiJ0yCa1cgk/oSJSdJYRGTyEycjTytjLS
M3PpRMPkuElolHL8h47Gx0FPZlY2rXobkSOjcNJqaGiqpa2tjba2Nty9vPAIDmWon1dXPb3d
XTAZFYweMZSSwnyKT5dh1fhy59IbUcrkeHpqyM/Lp6y8Gt/hk5g/bWz3/RQbWK16Wltbu8rQ
uvnh4epAp66la1lbJ4SHBRMSMRpDZRYpWUWMnX4Tk6P8ASmjx44hOzmBoqpmFt3xCwLdNF31
a25rJWr0WLRnHtuVqV1xNDTjNSyKmBEhpJxMpLrJTGTUcIaHhaOWS3Dy8qGjsYXrZs3AUSnF
LziUmpx0corLCBk9kSBvL4L8vHrtF5kUNG6e+PkHE+HvSEpKGu1mJVERwwiLGnNen7v5BBPk
JCE5OQ2z0pnhURGEDwm4Ik8CnSg4Trmu5ArkLAjXJi/Hi08G9/OeDdTSyscffItPoD8WYyOJ
mc388bnfohbPGg46/9rxupgMThhUonxG8X/zXrpgmp/3bTeZM7fetojcwtMgDeSZm0aLwV8Q
BOGMn3cAAFw8/Zjo6XfxhIIgCIOMeARDEARhkBIBQBAEYZC6pABgs5hpbWvFZL70eYBsVitm
i+XiCQVBEISfxIDvAZRlHue9rzYTGBJCaUkZ9z35PMMv4d39lqJ41qcbuX/pzB9ST0EQBOEy
G1AAsOobeO+r7Tz8xP8R5O6AzWzELLUP/nUVxdQ0GwgdFoajWg5Y6Ow00VxfRatBRlhYMDLA
KSSG5YHdJxw1ZUXUtZkYFj4cjUKCSa/DIlUhteppN9hwd3G8Eu0VBEEQzhjQJaCGglSGjJ9F
kLt9AgCJXIlCCgk7V/Het7spzEvnby+/REWrEVNDHo/9/ml2H0kiYe9aXv1gMzagKe8w324/
DED8ts/5bNMhCrMSefXVf9Npg7z9O1m3ey8vvvhn9idnX7EGC4IgCHYDOgOor2rC3WVk74WW
VnYeqeKJPz+BgxSiPDax71ASyye7MnHuQu5ZOhew8ulrL1KhW4RGKu/abndCM0//+VGUgPq7
d0ksaMJbDSn7k/jD0y/i5/LTfQNAEARhsBpQAPD0c6MxpxqI6l5oM6ANDMLhzDlESOQQjh6x
fzil+7RCiqu3I51GC5oe27XXFPLOG28AoNe1MDPahtUMs5feJwZ/QRCEn8iAAoBH2FiKv3qL
0pkTCfbUYjXqMaHBWJ5NY6cVd42UzOQM1I72D5KcneDRomskPV/PbCcFpqozmUk1OHv7cN8j
j+KqlmLubKXVqKSmhK458AVBEIQrb0ABQKr25KG75vPuP/6Mf3AQNZXV3Pu/z3PLzVN4/eWX
GRbqwekqPY89cSd05JF88Hs6awopPV3G7GV34yyDZoUa0IPUkVsWx/KPl54nJMiPyspGlj74
qH1iN4mYp0EQBOGncmmTwVkt6PRGVGo1sjOT6xv1negMZpxdnJACpoZsVh0s4675U5Eq1Cjk
fd9nNpsM6E1WHDSarnn6BeFKEZPBCYPN5Z8MTirDwUHTa5FSrUHZ87K9RIrGwQmV5kKfDAG5
QoWj4pJKFwRBEC6jyz4ZnMI9guU3Xu5cBUEQhMtNzAUkCIIwSIkAIAiCMEiJACAIgjBI/bw/
CSkIZ1RWVuLv73+1q9GLwWBApVJd7Wr0Iuo0MNdincxmMwBy+cBv7YozAEEQhEFKBABBEIRB
SgQAQRCEQUoEAEEQhEFKBABBEIRB6rK/CSwI16J1ad9wfI+YC+hqWTZ2OcvGLr/a1RDOIc4A
BEEQBikRAARBEAYpEQAEQRAGKREABEEQBqnLHgCqirKpazMCkJORjvG/dKIJY2c7NTW1GC09
l9poqq+lqbVjwPn07I/LxWoxY7FenY4ty8+j03qJG1k7Sc/I+5El2zCZzD8yD0EQehrYU0Dm
Op556jXcfTywAUqfKB67Z3GfSXPS4jGHezB3lDcJO77DPXIM3j/Rh1/2b/yUA6dq0SqsNDbp
mHfbCq6PibQvz6hGq5TSVN/E8KkLue/maVh1pTzxx3/j7euB1WrFNyqO+5bMoq4olbc/XkN4
eDB5Za384Yk/4Ka2suGDf1Bg9MJUV8zY+ctZOGl0V9kN2fv5++cH8HDXAmBzCOAPv1nRqz8G
KiPxCMNipuLQT3iO3/4VnUMXMHukV795dNXHQ0tzQyPD4m7kvltm/uiIf/LodqaGDkfTV0Y9
fied7c1ofML55QP34CZr55uthxkzevgllGThyMFUps4YfybvJl59ayP/97/3/8gWCIJw1oAf
A/UZHcdj9y7tvdBqoig/H5PcieHDgpAAPf4PkHX9l1nfQWFRMQpnb4YGegNWOnQGtA4awEpL
UxtObi5Igc6ONmRqR5QyCTVlRdS1mRgWPhyNwp5bXXUFOqMNbx9fNKruJpiB2//ncUZ6KjG0
1fLK3z5h0rin7csf+QMjPZVg1fP2c89Rt2Aa6tpKIq6bzUO3zuvVrJ2b13HL/zxJTLAL8du+
ZMeBNBaEd5JpHsKffrMcq66RF//yLtMmjMZZ1l36pJnLueXGqN591LM/+uov7GcbVbWNuHl6
o5FDZnICDqGjcJeBs6sLne06HJ0caKqvx8HNi5jZtyJVnf3imo366ir0KPDz8ULW9XnNHvWx
Gvj07b+SURVHhKsFZBrUShlYTHToLWi1Kto7OpFjoqSkHPeAULxctOfVzVmrBokciUVP0ekS
JFp3hvj3DkI9fyfHt37K94cyuX2WHz1PNlsba6lv7sDdxxdXrf0Lcx3NddQ06fDw8sbFUU17
SxMJ8ScZFT0MJApcnV147OHuxwhtFiNV5VUonNzwcndGEIRLN+ADwvMnDTXy6WuvcDA5m8T9
a3n72339bmtqq+Llv/6d1JxC9nz3AZ9tj8eqr+avb3yFFdBVZvDk00+SU2cAzHzyz7/TboH4
bZ/z2aZDFGYl8uqr/6bTBgk7V/HJut0kJRzlX5981289VU6e+Kv06M9crrAvtVJVnEuT3BON
FKrLq1Db5FRVVdPRefYyjZ7qVl/GBrsAMG5CDCVVhZTnVTBuwhQkgMzBnbFhckobDb3LvmAP
9t1f9cWp/OXlVzmReIIP3/+G1KRD5JVUsX/7Nrbv2IHOaubDd1ax4ZO/8a9Pv6Gmw8ThXd9w
MLsesLDh/Vf4YuNujny/gd2He19m6bpSI1UR4O9PW7uewzu/5XBOg32/NOXyza79gJl3n32K
1/79CVl5Obz56mu0Ws6vmwkAHa+9+g8SM7JY8+HrnCxpPaf/u68PhQb4o+/svf50wi4+/GYL
aWnJvPGXl0kva6UhP55X3/yEtNREPnzrXerNNhL37KCiroJt27az40gamBp46V/fAmDR1fPK
i39h97ETbPjyQ3IaTBfseUEQ+jbgM4C24hy++/ZbbIBLcCRT/PW0+Mfw2J2LAAvvPf8ijZZZ
fW6bemQfI2ct59aZUWC7gX/+6e+0znue4epyyjssVKdlMu36yaQnZxMe50Sz50jcZW3sTmjm
6T8/ihJQf/cuiQVN1NdUMWbSUm6IGYbsnHKkQEZSPE1aKMtPp8FnHK4yeyO/ePtlVDYz9bX1
zL/nURxlIHUNRFVRxMH9e8hIy2DCwuUsmRxIu8KhK2+VmzcOZFPX2Y5W0/09ZFd3n3NKV3Jk
z6dkJNiPnDXekTz5yB1da1tLUvrsrz07NrPskaeIDnDqSltekMPUO1fgpQAwYalLxhD7IM/d
HwtAoUSKGegoSyHTNoz/e7i7nJ69UVmczuHD9bTVlXE0s5EnlriSckqKWXrmNEEiQ3rmJyAP
HMMTTzxoPytpqcBghb191A2UPPb0E/ipJWQ72Shv6x0E2+uqOHz4MPrONo4cPMayR54Auu+B
hMbN47fROpqb2wjWGMnPKUMlryIgPJoFi+egusXe8zOXLSejdBUr7rrLvqG5rmufpB7ezdDp
t7J8ztg+2i0IwkANOACofYKYOm0qNhso1I6YatMpTD/OG2/kgwRabFqs/dwcbDcYGTI62P6H
REPIUDdMVhg5Ipz0tNM05VWw+MF7+M8neylUOhARNRZsBtprCnnnjTcA0OtamBltY/b8W9my
Yw/Pr/2EoRNmcc/S2V0DgxQw6nToZUoiJ8zj9tHDkWC/NHTP7/7ISE8lRl0T7/3zdQpHPM+w
URMYNmoCALff0sBzL37Ggum/wcncgQWQAYbGKnSAt9aJ4g5dV5uaG6roHQKMTJtz3/mXgM4w
6Yx99pehXcMwf6deac892ZL6xrJ8Tux5eerb2wjzH9p3pyOl02xAr9fj5B/JMwtux1Ep6Set
fQ7xs2vPFt9X3UCKXNZ/PjajEb1ej1zpwq+eeBofV0cw13WtTz++lfW7shk5aijm5mpUIdEM
nzKbgk1b+Mefn0fjM5T77r8Hd03/Z1StOgNDYvprtyAIAzXgAKBwcMDfP6Dr745OB3yGjubR
h5cjxX5dV3HuIfkZno6OJKdnMD5wEjZ9E1nFrdwohZHRY9i3bjdyRTCuDj4EmCv5Pt3KgnsX
gtSAs7cP9z3yKK5qKebOVlqNSkwWCSvueRAw8ek/X6LeNBufMzeZzcD4abMY5dX/hxqUGi1a
jQ2zzUp+Tg7B4ZGoZGA06LDJ5UhR4etaT0pRE7FD3UiKT2RI4HgCw/Ss23KUBXEhWNtrSS22
Mc994B+EUDv13V+OHlbScmuZGumNxWRGqpCDzUh7pxkvxZmj834+8ODg7k12XgImJqAAzCYz
csXZtGaGhU9g7tzeAUmKBOmZJ4h0ug4udBWwz7pdhFNACHPnzu13fdrxEzz0zJ/xV0Hh8Q2k
tUJLh5kbb1/Bwtvh4HefkJTfwNwxrpjb2jFz/o/U29WZ46lpxIVMBZsFs/XCQUkQhL4NMABI
zhsmtIHjmOh8jOf/8k/8XSXUtct4/MlHUUsUnD1OlintA+So6XPZ//fXeacim6bSIiYsuh1H
GeAXgaL8A4bc8CsARkb6sSqxg1AXBaDglsWx/OOl5wkJ8qOyspGlDz5K1YFPSa5V4uMkocIc
gnOPFkjpexBQIWH1u3/DQSaltbWN8AlzCHNTkpmVz5+/+JzA4GBKi0u58a4HkQMLlizl9Xdf
IyXEl5IGeOKJMbgorcQ4HeKvr72DubmKabfcbW9DVxepOLLnCzJO2C8TKZxCeeLxlV390V9/
zVt8G2/+621S/fyoq7fwx+d+R0TECD76x9/xcXNhxW8fQnLO4HY2T43PSOaEJ/DnF/+Gh7qT
4VNWsGBa+Jn6SJH00R2Rw8N5Y/X7FB5xpLaxjYARM+zJe5Qhkdgb1lfdev5kJOfFjvN/J/bF
Cs7eso4cHcV7b76Fr1JHm8lM+PhITuedYN2uZMJDfSkqruC+uc6AkqhgA6++9i+cvYP53YoZ
XXmMnDaPhLff5G9vpNLZUM+dv3+WCHdlXyULgnABP/qTkEa9DgsyNOqLHQ1baWtpQ6bS4KAe
+D9Ws8mA3mTFQaPh7KVrvb4DowmcnLT9DPkDZ7WYMBjNyBUqFPLu4cuk76S904CTqyvyHoW0
tTQjkatw1Gr6yO3i+uwvmxVdpwF1jzYa9TqsEgVq1cWfoTUZDFglMlTKgcVzva4dC3K0DuqL
J+6jbj+WvqMDm0yBpsfvwGwy2J8Kc3JC3qOgzo4O5Co1Cvn5p5eGTh0ypRq57OLPMvxrx+sc
rxOTwV0tP2YyuGvx84vXYp1+yCchf/RsoEq1w8UTASDFycXlkvOXK1Q4njMGqtVa1AMYuwZU
K5kCjeb8QVah1uCmPn+Qd3Jx/VHl9dlfEikODpqLp+uH4hJ/iGoHx4En7qNuP5Zaqz1vmVyh
wsXl/HZo+kh7lkoz8D4SBOF8YioIQRCEQUoEAEEQhEFKBABBEIRBSgQAQRCEQe8il78AACAA
SURBVGrgAcDSyZHvt7P669Vs2PI9bcZLnRKy2+7vvqC+v7f3rR3s2rKFLWf+dywxu2tKg8T9
22mz9LPdudVtO80HX28DID/zBLlVbT+4vsU5KWzZk0DPFhtaKtmyZQvFtQOfGdTcUsh3246c
t7y9Op8Tmfk/uH4X07Pfzj4pYGfi4w+/6X/DM/sip6yp1+KMk/vZdTjl8le0h+PbviahsHe5
xTkpXb+LbTu+p7rJ3vdXuv8E4edqgAHAynfvvEZWI0ybPgNvRytN+h8eANo7m+l3a6uOlPwq
wsPCCAnwJ+foBjYcyABA7eR13vQP/WZj7KRB3wmAk1qDur+31AagNCeVw3u3UtDUPe1BytG9
HD54mNO1ugts2ZvNbKTD0HnecqWDE0rZZXqsqQ/d/WbinTdX9VrX0X5+fbpYdSQcO8LO/T2C
lrmZjRt2cPBI6pWoahe9SU9rZ+/pn4tyUpF7hBA2dCjOCiNv/fMtOixXvv8E4edqQI+BdpSn
kWYN4aU7FiABggLsbwS315WyZt0mqlv0RI6fzpI5cVh1NazbdYyOukrq2yzExEVTlp1BXYuZ
uUvuJDrMPhPorjWrqK2owjtkLLffdgOqHs+Yq9zciYyyv8HqaatlR0k9AM31pViZgEVXw9Z9
ibTXVVBR10bMzHnMmTgKsHD8+60k55QilxmRakIAqG9tRqq1AmZ2rtmKWdpBbmE57kNjWXnr
bGSYOLJzC2n5laidXIgcO47rxo3qqo8RmDdzPAnH0hi+cCJgITW1lKmxkZgBa2cj6zfvoLq2
AZWjG/NvXkaguwP6lmo2bt5BY5uB4bFTmTFMRl1VEV99+gHldW3EzprH7NhRGNrq0RnsuyI1
fg+VzXoKsnORatxZvnIlng5S4ndv5FBSNo7egdy+/C48tfb0Vn09W48Xc9P1E7Dp61m9ZhcL
7liBmxLid68lbPrSM/0Ww+5vvqaipoBVX60C5xDuXjwJS0c9W9d8RW5xOe5hsazsMbUGgFvk
OBRl6TSbFuOqgIqMkwTHTKUo3z6hXE7qUY6eSEdntDJszGQWTI/pd/8c3vEtY+fegbMcKtKT
aXALY0yQI8d2biStsBKrTMXkGfOJiQrs83doBYLCI4jyUsHIKLKOHKHDCpoe/ScIwsAN6Ayg
rrSc6Ijoc166MrP6w4+JmLmMp37/a/RZe9iTWo61s5GsvHJuWLaS+xfHcPhoGrNvuZv7l8Zx
ID7+zLZWAkZO4bHHf4drewbbDmb1yrm1qoSdO3eyYe3XfLo7hRlT7PP1FKan02m1D7hJmbnE
zV3Ko79eyfEDCQBk7N/AodMW7n7glyy7cVrXWUZdaQFVDZ2AjYz0FDzD4/jd7x+D0qM0mODk
zm9JqJSx8pcPsmR6OHnFNef1gU/0FIrTkjAD+toc2nxG4HRmUnyJVMqQiFgeevgRZo/xZM3W
7wELX3/wDh6RU3ng/l8Q5G5/9r69rYO4uUt57Fd3c3S/vd7G1jpyi6oAKMpNxaD04pe//h1j
vSCloIGq1H0cKrLy6FPPMneUJ19t2N29A9WO5Oz9ng4rVJxKJiMrnaTsGjC3sDu+Gle19Ey/
yZhx0yI8PIJYvPgmlsyyzy1kNrTjFXGmP07b+6PXXrapGD0uiIS0cgASUlKJvS6Ws8mUKmcW
3fYLHrp/BSXH1pHfZOp3/xRlZGE489pha81paloMgARn7xB+8cBDrLhlNutXr6W/z75IgZOH
97Bt21Y+ePNVZOMW4q3o3X+CIAzcD78JbGqi1iGMKZH+SBUOLLrpBkqLcgEICY8kwMMJZw8P
QsIjCfJ0wdnFhU7T2Vkh5YweMRSZXMW8RfOory/tlbVMocLNzQ1XVw+cZFJKK6rPK37I8NGE
BXqi0rriorA3I6ewmDtX3IyLgwYXl96TmJ0NBir3UCaNCUMhV+Hi4YoEKKmo5s67bsJJo8LZ
xaVH6p495cJYfx3ZVTqS4hOJiY3rmrVNotTQWZvLV19+wb7EQvQWE5gbKZWGMXdCOCq1loiw
0N71dnTHVd5X9yuZOi0OB6UCT2cXkErIKy7F2VnNiaOHqdbbqCjrGaDUjIx0ILO0lZScXFbc
exu52Sk0FmbgGxXZ6xRP5eCERqXExdm5601mlXsocef0Ry82C7ETJ5KWHA/GRrJrnYn06n5x
zslRzsEdG/ly9TpqdRYMZmu/+6dvEmQ2HRu//Yp1W/dhthgvOK22k7Mr7u7uePsHUp+XRZuY
CVoQfrABBQCv4EBSc1N7/8OUSDDpu6f5NRn0SH9APOlobUMq7X19XuvpS1xcHNfPuYFHHriJ
hNSBXW+2Wa3Izp+g5qIkMmhvt1/f72v+nLMmxcaQnHCcjKxaJo7y71qeuW8TGU0ablu+gnvv
uc0+Z41NilV/4cFs4BUEmUSGRqNBo/Xhrpun91odHTWC/NRkSstkREWMxlBYzMnMfCLHxFyO
0lF5DsejKZuMxASGxkzsvkRk0/HpR98wduoNrFx5D1Oiwy+hSRKsQGdNOt98n8kNN93KPffc
Q4Rn/2/3WoHIsbFMnjyFJbevJMK7mZImQ7/pBUG4sAGNltrAMYyRFPOf1VspLjnNod1bKelw
JsKhlI0HkqivKWXVul1Ejh4D9Hn8fA4zeXmFlORl8v5X2xgzdnyvtZ1NDaSnp5GcdILVX2/F
z9cX6D1Ncl9lDAkJYNWq9VTXVnPw4LHuFbbuhva1XeyY8Xz8rzfZvGUT//7PV/R3a8RnxASq
EjZjChqNU4+YZTBbUCrldLbVsW3dRvQACg9Gu9fw9Y7DlJwu4OCJ9H7Lt52z8NygMWpkBKXF
2Th5+uCilpGcWdBrvf+oceQe3YJs6HDkqIgMNbM7sZroMHd7fl0ZSqChgKTc0+QXlfRbn/NJ
mTghgne/3s+kuO57I9ismKxS5DIb+enHiU/O7jqD6CtftaOC3LxiCk8lsScxDbkErEYzErUS
m7mT4/u2c6pa19UJ5/44pUBx3inS0tI4tHc7Cada8XVR9Oq/nLSjJJ+yX646tmsNle3iO8KC
0B/ZCy+88MLFk0kZNSEOY10p2fnF2NRujAgfytjoaIrSEsnML2HklAVMGWm/eSdTOuPr6YpE
IkGicMTPyw0AjcaVAB8PsFmpKCqkuLKOuDlLiA3vObO+BENDPfUtLbS1dRA0ZgoLpsUgBeRq
Nd7+QSgk3WUASKUSAgL9CAiLQtJQTFpWAc6ewUSEhRPg44FaqkDr6Y27VoFcLsU/wB5QJBIZ
nj7+eAUMISYyAKnckbiYYeTV6IiJGtaj9RLcPH3RqtS4ezgSNXoC7k72eWv8AgIZHj6Mmpx0
corLCBk9kSBvL4L8vIgaG0N9URb5pyvxCRiKv5dLr3pLztRbrlYjU53tJznefv72NkpB4+ZJ
QPAwhrrLSErJoLZZx6Qpk3F36p6fRyLX4qqGEdGTcHdS4eHijHPgMCKD7P16tt+UUilDhviQ
kphCs0VNRKhfn/2h7Bp5JUglCgL9vPDw9kLhGsiEiCAA1BoNwYFBhHprOXEyiSazhkkTx+Hr
F4BWIe17//j5knwigdoWI2PGRuMbEICPfxDazlqS0nNRe4cQExlMQFAgmq591j1hnAIJ1RXl
tLS0YJKoWXbXnXhrVb36r6O5AbReeLlqaKipxNVvCFqllBMFxynXlVz8py5cESN8RzHCd9TF
E/bBYrFc0gRnP4VrsU7WMx9kkUoHfhXkR88G+nOQcmgnObUG3DRSslJPMObGB5gzPvRqV0u4
jMRsoFeXmA30yrsqs4H+HIydMgttXjb1jR0sufdRhgZ4Xu0qCYIgXHEiAABSuZLhI8Yy/GpX
RBAE4Sck5gISBEEYpEQAEARBGKTEJSBhUIjyGYW/v//FE/6EzGbzNfckyZWqU5TPD3sCSLiy
rq1fnyBcISN8r70AcC0+SXIt1km4csQlIEEQhEFKBABBEIRBSgQAQRCEQUoEAEEQhEFK3AQW
BoWs6sxrbiqI/+angH7otA7CteXa+vUJwhWSXXPtBYD/ZiIA/DyIS0CCIAiDlAgAgiAIg5QI
AIIgCIOUCACCIAiD1MBvAls6ObJvP6X1zWgcvZgzbzbVeYlYPaKI8HO6+PYXUZyTQmZ+ea9l
AWEjen2Zq4upgTc/+p7HHunnRpS1g13b9mH/YrGU8DGxRIb49J32arOZSDiwh6KqZpQaR8ZP
nkaor+uAN7eazSCXX7ZInnp0F2WN3d96Dh9zHZb6DBwCYhjia9/P9SVZ5LdImTwmkoyE/SSd
KkLt5M2NixbgqpGBzcC+rRsoqukgfNwUZoyPuky1EwThchrguGHlu3deI6sRpk2fgbejlSa9
FSe1BrVCdvHNB8DFzYMhQ4aibK+mqlXO0CFD8HRz6zuxxEptc+cFqqsjpbCa8LAwAnxd2PDp
mxzPq78s9bzcjm3/iuMlBqZMm0aoryNJmacuafuc77ew99Tla1va8RRCw8IJCwsjLGwork4K
3B1kfPzRKvQ2wNjCRx9/i7tvIMUnd7HpyGnm3bSEYOcO3v50LQCHNn5OVqsbS2+ZT+KOVRzP
a7hs9RME4fIZ0BlAR3kaadYQXrpjARIgKCAAgMyCZqRaK2Dl6M4NJOdV4uDsxpxFSwnxdKC6
KI0de+MxoGDq9YsZFaJh87drOFVWjXdQJLfdvgRnpf0z4u4+wbj7gKIulw5zKCNH2Y8abcZW
NnyzhpzyWgIj47hr6axele5vvcrFjcgoex5BagPbsrII1jvS4DaE+rTdtGiHcMv1E4jfvZFD
Sdk4egdy+/K78NRK+2iLpo90sHPNVszSDnILy3EfGsvKW2cjA9Li9xKflIPC0ZVFty5H01bG
d+s3U9tuJO76+cyaMLKr/jV1dUyacTMhQW6EBAUyHtDXF7I7o4mbro8FoCTjJA0Sf5zMp9lz
JBmJ0oEJU+cQQCN70zLpKKinOlnN2Bk3M0TZeF5ZFZnJnMg/TWVpCWalE+NGDCEjNR2LwpHl
K+/F21HR3aEyByKjIumxBNynMmNICuv2nMCnLoGQGTcR4e3Ijn1FzFt+D36eDvjNu42Mv7xI
tcFMSkoF9z73EC5yuPfW+XyVmMDk4QsG/qsUBOEnMaAzgLrScqIjopGct7yAqoZOzI0F7Mxr
45f/8zCLZ03AarJi7azlnU83MHXBMn5x23wc1XIObFxNs3skTz71JKO89Xy1bu9Fy963aTXW
oPE8++wTeLWns+t44cDWS840zWYm9VQ2Li7etNWdZu1H/+S0yYNpMSOoSt3HoSIrjz71LHNH
efLVht19tqWvdGAjIz0Fz/A4fvf7x6D0KA0mqMs5zPoD+Sy75wHmT4tFLrXw9cdfMH7hXTz5
uwfJ2LWOwmZDV/0nT57F+nf+yudfryOnpBYAtbsfebs3UqWzAHBo73Y0Pi5s+W43y37xS1Yu
X4yDQopvxCgmRg5jxKQ53LT4JqICNH2W1VZzmnK9lpX/8xvG+8hIKzNy94O/ZmKAivjU0t4d
bmll986d7Ny5k53btlFSpwNg7m0rKTv4NQfLHFg2ezwAbo5OZKemYQMsJhMaDwX1zQ20a0Nx
OROl3YKCMRl0F93PgiD89H70pWMrINW4Iq3JZc3GzZxukhDi50jT6VMMGz+b8ABPtK5+hAa6
cbqkjsU3TEYmlRE3eyFNFaUXzb+suBQVbRw+fBybypGqqtMDWl+ddJjnnnuOZ//0F0qsodw4
IxKAwJgF3H/LHDxdHMkrLsXZWc2Jo4ep1tuoKKvpsy19pQNQuYcyaUwYCrkKFw9XJEBmTgGz
b7kdT0c1fkMjcJe3UNSmoK00m2Mn09G6KCgqb+2qv2/EeP760guMCHBj22dv89m2eJA6MHNm
FPuOpGJqKabAHEKklwP+nvD1d2uITzlNcEgAyBQ4a9VoNI64uLqgsDb3WZbNCpGjY3BSK/Bw
ciEyOhYXByVuzo6YO42cy9XNDTc3N9zc3VDJ7WHfZrVittgwmzqxWO3pJs5ZBGUn+OOzT/Py
3/9NaXULcqm094/KZsN60b0sCMLVMKBLQF7BgaSuTeXW+WPOOwsAkGq8ef7FFyjKzyHh0Gby
a2YwP0SGydR7cJHajJjMNpBLwGrCbOort94kWJGrNGiUoBkWzXDv4AGt9x0/lcfvXdYrrc0K
Q4aF99wYmUSGRqMBNNx1c2SfbQnsI11/ZDYpBkOPdkvAZrae2RaiJ88mOLD3TXO5WsuE6bOY
MCWWv7z4KZaFk4iZPodNL39DktWH2LgpSJCy/PfPU1VaRHpyAv/8IJ/nfrPi3M7qs6yGqot2
c48GODMxLq73JSBg+9efMmLBA3jVHGH1tmM8sHgKUrUrKx9+9EwKPa//6R/4u7uj1ZXQbAJX
BTSUFKNWaS+hAoIg/FQGdAagDRzDGEkx/1m9leKS0xzavZWSFhPY7Bk0FSaxcW88Lt5BRAwL
wajrwH1oNDXpBzmcdIqCrETST1UQOXY4X67eTH1DPVtXryIk+uJPhwwfGUFOTgU+/v5IjG0U
lBR2ldvvegCbrc/8eh6NjhoZQWlxNk6ePrioZSRnFvTZlr7SnZvXWdGxYzm04TNOFZwm8ehB
ynTOjAgwUtpqJsDfm7bqUgqrO7rS79rwObsOHKOktIT9O7dAQAAyQKrxYWqUlE+3ZTBlYjiY
Gvl89SYMCmciI4dj09svD6k1CtKPH6GitIjadm2/ZfV3FH7e8bmlndTkVJKTk0lOSqK+VU95
6gES6l25adpopi25m+aT20gubcbSXsmBo4nU1laz5YuPUEdPx1kmY3xsIJ+t2kp1RTGfrP2e
uMmT+t/BgiBcNbIXXnjhhYsnkzJqQhzGulKy84uxqd0YET4UZ4UCrac3vr5eNJYXkJKWQZvN
jcXzZ6FSqomJHk5WagqVDe2ERkUyasw4JI1FJKZkovQfxdJ5k+nrGSIHd0+83OxHjUHDRyNv
KyM9M5dONEyOm4RGo0aJjOAQv77XK+VIJQoC/bx65SuRgpO7F25a+/Gtg0cQQ91lJKVkUNus
Y9KUyfj6+53XFjfv4PPSuTtpkMul+Af42vOWyPD08cfJ1ZcIf0dSUtJoNyuJiggjdvx4ynPS
yCksQ+MRSty4Ycil9rMfH28vSgrzKT5dhlXjy51Lb0Qps69zlRuoxItZ4yNApkJpbCQpKZXy
ujYW37wQV60Kt8AQTLWFnCosxzM4nOnXxZ1XlkIm6Wq3RAoObp64a5UAOPoF4Omk7tFLBipr
Gmhra6OtrQ2V1ouOthqmzp2Pq0YBUhWRYYHUNLUT6ONOVnISWXmFqP2iuH3RNGRAcMRoDJVZ
pGQVMXb6TUyOuvpf4jpRcJxyXcnVrsbPxk85F5DFYrnmJs27FutktdoP5qTSgV/Zl9hs/Rwq
C1dVcXYK6zds5voVjxMT4ny1q/Nf7187XheTwV1Gq1du/MnKuhY/U3kt1slsNgNcUmC6tkKY
0KWlqYW5tz7AGDH4C4JwhYgAcI2KnjLzaldBEISfOTEXkCAIwiAlAoAgCMIg9SMDgA2Tydzn
mtxTWVh+XOaXzGJo49iBvRw4kf6TlGe1mLFYf7p76PaXsX7qXhUE4edqQAFg13fvsy+j+20i
q66CP/35P1jMTbz61hd9bGFk85dbf/IAsOnztyluteF05kWoKy1++1ccyP7hE7Gt//zvZNZ1
Twuxf+On7M/qP7+Woni+2HQYgOqsDPLrxBQLgiD8cAMKABPGjiA1Nanr74LERCLGRyOTu/DY
wz2eB7ZZqC4roaKqFpOZrreGa8qKyMzKpdPUfbTc0VxHZmYmNc3tPUqyUV9dSXl1HRZbf+ls
tHfo0He0kJt1iroW+4tOhs4O6huVzJ0+gWEh9ufO2xtrSE/PpKnt7MyhVnQ6PTaLkbp6+wyV
ps52sjLTKatpumD+9uYZqSwpoa7RPpVDzOxbmRbpecFtsJmpKiuhvKqWto6LD9hmq63f/JxC
Yli+YAomfSflBZlkF1XR1NSE3ijOCgRBuHQDehFM4+7JvjUbiZk5HaUUdm9bw9i5y/BWNvPc
mxuYO20cWNp595VXyKlrp66skLzKDubOu46T2z5nU3wJss4a1mw8yKTpcTTkJPDGB9+h0cjZ
sX4NCq9Igrwd2PD+qxzMqaWp7BQVLU446Qr6SKfhzSee4HD2aSQSE+u/3ciE62eSvn89J9Py
ada1U1ijw8NcyVufbELrIGXdd2sJiZ6Eoy6fzzbtZe+mDeSV6xkT7srf//FvJGoH4netQ6cN
ZYifY5/5y/X1vPry36nVmzl1fD/a8Alk7PuKEmsQw7yVfW6jMrfw+iuvUNzQSX15Lt/sTGfu
tJiufs1OO4pH+CS8tfaHsU7npGJ1H95vfh25+1kfX0aI2sDWA0eoamiktqwYlddQvJ2vrWeS
rzXiRbDLS7wIdu3V6Ye8CDawFki1zJjgz8Gk08wdbiFfH8Id3mowt3W9yZtz8HvcJ9/G8lmj
ABNlmW+AuZFtx+q476HbkAHG1vXE5zRQvut7HnziKYKdFSycM4FX3v+eEZowyrTR/P7u7mmD
v3zzpfPSTR51F8rgaJ74wwNIAFtLBQYrTJ63nLysOu686y4UwBdvPM+C5ffgp5HhrzJy8GAC
d0/3IT+3gscef4ogT0eObf6CoZNuJHaEL+NH+vHBhkPMiuk7/8x92xm7+H4WThjSVb8qiZSz
d0D62ibn4B4CZ9zJ7dNHACaq3lg14B3TV35SqX13eYaPZt6EfMr9pjF3lNeFMxIEQejHgEPY
2NgY3tueQmC7lZHR48+7dtSh0+MafO5gZMHQ2khKYiIAVgdv/JyVlJqlOGnsRcvVzijMViwm
My4OvV96svaRDuwRru9p5LovMdlMejJTU6hQgMViIyzMD7AyIiaGIE9HAMxWC5V5mSTqysFm
YdzosH7zN5msOLn0/1JWX9uYLTa0Do5df5+7XiZTYDF3z8VjtViQyaQXaaMgCMLlMeBzBaeA
KNR1OexJzid2fPeMmmcHKb8gHzLj99HY2k5laSEtBrDJnAn0UzN0zERuuGEOsWNGIAX8gl3Y
cygNnU5H+uHvcQj0xcl/GKezTlBcWUtjXSVV1c19poOew3z/vAMD8PALY84NNzB1cizOGntN
JZLuYTUwwAelszszZs9h5vRp+Lk59Zv/sKEhnNi/i9rGZipLi2nutICtu/19bRMQOZSkXRtI
z87h+P5d1Jh6rx/iH8zRvftoauugvvo0KVklDPN37r+NPRbK5VIqCgtobWmiQ2/qK7UgCMIF
XcKsQSomxkUg94wiyEV5ZmsHooLtg7LfyCkMdzawft06du1PwDdyGDKJijtWLOPkns2sX7+B
gydy0ToqmT7/NvTF8axdu4YjBe3ctuh6FM6B3LVwPDs3bWTjxs2UNer6TAcSQkL9uqrl5RuM
4swo7BsU0jUgz1x4O7rCBDasW8fWnQeRaxyRKBzw8+o+Sxky7nqiXDvYsH4DGzdtpc0i6zf/
wNHXMSFAzsYN69m8bR86iw1f76AzE8v1vY1baDR3LJxIXmYGnXIXHM853xo55Qb8JTWsXbeW
9eu3EHX97QS79J+f2s0XX0/794KDY+KwViWzfv0GCmvF00CCIFy6S5oMzma1YrGBXNZP3LBZ
MRpNyBRKZNLuI22rxYzZakMhV3D2ANxmtWAwmlAoVb3SWsxmbBJpVxn9pRtghTGazMjlCqT9
bmvDZDIhkcr7b1cPZpMJqUx+gfy6tVVkk1imI8DdhebKUxzIt/Hkg0vOq6PBaEQikaFUnjsL
/4VZLRbMVhtKxbV1M+paJCaDu7zEZHDXXp2u+GRwEqn0whtIpCj76BSpTI5Sdm5SGWr1+ZNB
y86pfH/pBkQiRalUXiwRCsXF0nSTKwY+SKtdvZGeOk58zinUrt6svHXa/7N33+FRXXmC97+V
k7JUykIZgZAQOQcTbGMbDDZgux3aqZPd0zszOxvmnd199p332efp5+md7d0dT093O2cw0YBt
wNhkm5wkIRGEMqWsKqmqVOHWvff9o4SQQOACG0OPzud57Ed1q+65555bnN859546Z9g8mkzm
67dHQKvTXVeugiAIkRJNxzvIYEtk/gNL73Y2BEEQhiXmAhIEQRihRAAQBEEYocQtIGFESLIl
M1ZbcrezMYSiKLf0q80fw72YJ+HOEUtCCiOCw+EgPf3ur0082L04kkTkKTL3Yp5uZxSQCPWC
IAgjlAgAgiAII5QIAIIgCCOUCACCIAgjlBgFJIwIHZ52XK3ddzsbQ0iShOEWfln+Y7hZnuxR
ydijkn/kHAl3kggAwoiw/9JuMRfQ97Sy7KkfdSEY4c4Tt4AEQRBGKBEABEEQRigRAARBEEYo
EQAEQRBGqMgeAqtBmlp7yEq7spqWSlNdExm5o9ACfreTcxdr8PpDpGTmUDAqvJqVs7MFl19L
bmZKeC+pj1aXnzR7wkDSktdFbXPbwOsEeyb2BNvA69bGS3i1NvL7l4P0ulqprKoBQxSlZaVY
+yfEb22qoabOQVRSBqXF+QyeJl8O+qituURvXwBbbDw52dmYI5xIv6utCcWSjD3m1n727exs
ob2rd8i2mAT7kHO/GbmvlW8rupk7vfiGn+l0NNDU0oHWaCEnrwBv3Rm648ZQknnjtYuvCLi7
aO9TyUpJiig/VzMWYN+uz7nQ2MXcpU8xJj068n3VIDUX6pD7X1qjE8hMt6MBmi+dx55bhEk0
SQThRxPZPze5h0079g3aEOKTN9cSAuRAD++98UfO1LShCfWx+b03OVTVBED5wR3882tv0uIJ
r1kbcjew/cCJIUk3nd7Ppzu/oaqyksrKSlo73QPv+brrePv11/lk10EAlGAP7/75dVo8Co1V
h/hgy9eoQG9zFa+/uwHFYOTQF2v46sTFQUdQ+frTj9j5zQlcPd0c2P0FJysuR1xA7XXVNHf7
I/78Fd1tTVRWVnFwx2Y2b99PVWUljbcwDFHxdXPx8o3z2XD2W954+xOan9jb+AAAIABJREFU
O3uorThKRXULPY5mHK5AROmHPO1Uno+8HK7obTzF0VovDy5ZQmaC5dZ2lnv4cM1mzlVXU3Hq
BOvef4tvKsPflXNnTuNXbjk7giB8DxEPA73u32b/gug1x/eiZMzguScWogWKc+z8fu0uphe/
hATMm5nP1h3f8stV84cson5FU3snMx9czryixGsOGGTrus3MfHgJh893AdBWdQwlazrLH5iH
Kk3l//72d7T5F3P28AGmPfwU8ybnMLUwnt++dYD7Jxf2R7cQ5Scbefkf/1/iTVoW3jefQEgD
qDSer+Dk2QtE27OYOX0qVqNKVWU92ZlRVFbVUDBxJrHpecTHhVfscrY2cOToKYKGaGbMnEly
nJWulnpOV5xHY7IxemwJmcnhNXvzx00jfxyc37OZs6ExPHb/WAB8PV1UVlXT1eMlPiWLSWXF
GLQq9efKOV/fii02npKyidjQDJRVwNNNRU0HkycUhbepAT7dtIMVL/4dYzNjARVZVrmw5yTO
1ib2th7HHdAybc48UmItdLY0cO58Dd6gQlZBMcV5GegssRTlhXtBzfXnSEjN4vzZCuKSC0mL
gxMnz9AnQXrOaMYVZAIgedo5cboasyGW1hYHuqgk5J4WDh8/jR8DE6bMIDslDtflRrzWJHwt
5+nVxjFpTO7AZY3NLmT5ivCymI1Ht/HVhRrmlGSRO6YIc39zpNNRT2X1RRSdhbjkNCYV50f6
NRUE4RZE3OEOeHqoqanp/+8Svv5+fG3zZabMnDaQUNyocWQEHHhkUIHCGUsIXNpLTefwC5d3
dLVSd/4U+/YdpOpiPaH+uUlrjn9Np7WQWUWpA59tae5gdHEpGkBrsJCfG0OnW6Kjw8X44lEA
WJLyiPd0ExrYS8eY4iQ+eP9Dyqsu0ieB2WSgp6GcD7d9Q35xKYHmM2zZcwJQ+PLTTXz0wdvU
dXjQoFJ9Yj+Vjb0oQSfvvf0R0Rn5pNl8vPPRFkLIbHjrXYzxKcRb4eKlpmHOcOhkq72OWlq9
KllZ6VTs2cahsy3I7su88+luUjMywdtGfatn4PNywMOGD9+n1acOBATF14E7djRjMmP7t2jQ
6bRotFB59FuMcWkkaLvYceB4+Bqdr0I1x5OeHMu2j97A4ZXxOqrZd/QsAEf37eCjjz/iaGUT
aDQc/HIDDX1G0uzxVJ+7MJAXJSQjSzIarRaNVgOhXt59/R0MSZlk28289+d3cQZkHGePs2Hd
R3y6++h1DYeAx0VNTQ1ny0+w69h5Ro8uBODAtg30yuDvvMSf3/oI1ZJAYoyWLVv3IQjCnRFx
APC2OTh06Fu+/fZbDh06Qk8wvF2SgpjNg9fU1WEyBghcqfd0FpYvmcO2bV8x3LzT0+9bzvis
RCxGma82fsDOw9UEeh1s/KKSx1csRpEVVCU8T3lfKIhBf/VXiiazFYCgL4hBf+VUdNii9IN6
GloefOIl5o3P5dCe7fzpD3+mpqWHs2fOkD1uEjEWM8VTJ1FRXgVAyNNK6eJneWr5gyRYdGg1
GlSgp7GKYFIumUkxJOeUYGqpxBkCjSrj7fMTZ89l9rTvnm8+Ma+Y/JQonF1O7Ek2OtucoMrI
wQC+kEJuySzKcuMBcHV3sHXDx2gyZvDwzDEDaSh+Hwab5brelCrD7KWrmTVlAtOmTUQJhm9d
jZs4hWhDCGdvEJtVQ7c3BBotV/tjIWwp43n5p6vJzUwAjYrX7cZgjeOhxXOulndcGpNKc0jP
KGLq1GlYe2vQF8xg4fSJTJh2H3PGWDhT70Krhz7Vxi9/9jJTBrX+AbwdDo4cOcKBg4dw9Kgk
xoR7VxpNuDdSf+o0hfMfY8GsyZRNmkqC6dqzFAThhxLxLaCE/GKee25l/yuJtur/Hd4eE0dj
w2VKk8P/0JWgi8ueeGIHpZxdOpfY3f9EpSOVa2UVjCOr/+/irBj+ZVcV6SEjIZuer7ZsQPa7
aK/tZuOudMpiYynvaAfsgEpXSys5eg2xidG0dfmwp1pQQ25ae4beajKYo5gwfS5lU2dy/uhO
vtp/hGKTjONCJcf7mkGVmVhaEC4QezEzx2ZxLUWS6e64zPHjx0ED9jETMWl0PPGLX3Kmopxd
nx/FmDGOF1Ysumk57t/xCXXuJKaOz8WQEs9lWYMuZhS/enY55RUVHN37JePmL2deNrS2NBHw
O5nz7MNDIrU+JpG+5nq8IRWbfmgFqbt2MQ81yPp3XiexZB65qYnEx8Rcfx8OA4vun8GVpOY+
+CSx5eUc2vclXQETr77yApb+ZNVBYVyVJGIsVx/Yx1iicUkqqgyTZi0i2nz91ysht5hnnlkJ
qLSf/5b3d3/D2BeWD7wfklVs1qiB16L6F4Q75xbGXFzbfg9XBaUTJ3N01xZqHe24e7rZ8+lm
7BMnMrhPgNbIsmWL+WzjVhgyPkfiyy3baLjcRm9PNydPlJOUYKd46iJ+88uXWb58OcsfnE1C
9miWzJ5AVslYKr79CkdnD03nT3DOk0ROrJGxhQXs+mI7LrebE7s/J75s7KDIJrFv+y6aHG30
9PbicrkwWc1kZqRgjElg/qLF3DdvLmnx4dEsmusq0HAlFJWSgdVoYtrs+SxeeB9j81NB9lDd
2E3Z9Pmsfvwh6s83fmcptjQ0MXXhHLIzUujt8YAWPK31dElm5t+/jIfnjKGhoQGAopLJvPqb
X3Bs47ucqm29mog+nhkFOtZ/uoeOLietzfU0NjuHvUoofTS4LMyeNpHkBCsej2eYy6lBM6im
rblwgezRZax+ajWWnnrcMsOKSs/hYtUxHJ0uejodfHP2AnlpNyjHfiF/H21trbQ4HFy81IA1
KtwDuLIsUcaYPE7s3Ex59TkO7dlJm/QdBSoIwm2LrAegMTIq1T54A1lj8tABsVklPLmolc83
b8Jq0oIpkSeXhW8bJCalYTOEaxZ7wWSmjK1AkzT4Ya+O5AQDn235lCirgaAaxeNPzMBkNmIK
1wuESKQoL5PoKCtEFfLYnHNs3rAeNRjkiWefwKSFgqmLyGtYy4b16/GHdDz1k/lDjmHU9LLl
00+JshiQddEsf3w6iWaFsc0b2bxpM1pZIn3cLEBDdk7akFNPTc6iz2bAlJDHqrmj2bp5M1Fm
LYbYDMbp9LRdOk111Wk0QS/z7198XdFZ4pJIUq0Dr2fdt4gvtm7mpEEmLjGOpAQrBpOOM99s
54zBjNcTYPHylWgMvaQlJRGTmscLL65m0xe7Kcp5Gqs2XP6LVrzAjm2fsnlzPWowwIxFjxGf
mERiVDj0ao02UpMSQRfL4kmpbN64EUXREJeWg82gwRyfSmpS+BZRUkr2kOGXIXc7mzefxWLQ
ED92PvGDviVGm52khPD5GGOzeWJBEZ9u2oSZALlzV5KbaKJpUD6u/R7FST1s2/YZihLCHJ/O
yvvnApBZWIRBA3E5E3jykQAVlRUkpKYSpe+4Ph1BEH4QP9iSkCEpiBRSMJvNQ1qTkZDlEIoS
Xsoskn0Dfj8arQ6jcdCshaqM3x9EZzANeh5wlSKHUFTQ6Qc/H1CRJAmNVo9eF+GI2JCEggbD
wLJrKsFgEDQ6jIbI4mkoGETV6jDor/aGVFUhGAyi0xsjzgtASJLQ6HTX3/oZQiUYCKLTG9BF
mHYoFESWwWgyfudtGCkYQEGLyfj9Z7Z0X67meFMfGQmxuBxn2XtR5T/9fMX3Tve17b8Xk8F9
T3drMrh7cfnFezFPt7Mk5A82G6jeYER/m//+dTo9ush+lwWAyWy+fqNGh9ly43HpWp1+mPtd
GgyGYVqqN6HTGxiaVQ1G4619EfTG64+p0WgxmYY5r+9KK6LphDUYb/HLqtcbifR7ZLjF878Z
c1wy2rOHOHzuLOa4ZH66au4PlrYgCEOJ6aCFe4rBlsj8B5be7WwIwoggfngvCIIwQokAIAiC
MELd8QDQ2d5x/TQSEXI7O/AGwmMQO9vakH+Qx9WCIAgC3PFnABKfvL6Wn//X32AE3Jer+GTH
IVBlPL4gMTYrhoRcnluxYNi9Tx/YgTr6IeaNSWLn2rd48NV/IOneWkJVEAThL1bEASAUDODx
9qE3WYiymgkPfwyhRcbV04slOg7blSkhVAVPby+KFjxu38AwQktSLsuWJaH01PLm1zU8vfQB
tHrTDdKHkBIi1D85UCgQGHYqCUEQBOH2RBQAZI+D19/fhs1mos/dw+TFK5k2JoU1r72GFBOF
VqvB2afn1V+/iIUgX274hLqeIGYDtAUHHcxkISXZgqTrQm8yk5ycfJP0M+/ICQuCIAhhEQUA
rTmBFSseIzragqvxFGsPH2XamGV0+FSefHYV6fYY1v3597hl6L14hPJuAz9/bjVWfYiWc/96
m+mLACAIgnAnRRQAAt5uvtq+DY3Jhk4NoKjhaYiNtgSyUsIrXJmsZjTA5drLlMxaQKzNDEgM
86PciNMXBEEQ7pyIAkDlt3swZs/g8fnjUP0O/nXD0Rt+1mQ20tvdCaSEpzmOYAjQraQvCIIg
/DAiCgDxiUk0Hz3JMWMn1WfPIpnTw28MmSQm/CJ3Qhkb//gRXyhdeNsu0Srphn14O3jXG6Wv
RzswhFSjvYW5IgRBEITvFNFkcKoc4MLZc/QpkJKejixDVloijsvtpGeE5/jvbHUQk5yOURte
rLyxpRNbbDx6nYm83IwhFb4ieWnu7GNU/yLzw6dvx93ZjmSJI8FmpN3RRFxqFkbx0zXhNojJ
4L4/MRncVfdinu7YZHAanYmi8WXXbb9S+QMkpaZf/Ts9m6T07BumpzXYGJV2dSGRG6UfnZQ8
8Hdy+vWLtAiCIAi3T7SnBUEQRigRAARBEEYoEQAEQRBGKBEABEEQRqgfbElIQbiXnblwGkPM
vbX+kSRJGCJa0e3Hc7M82aOSsUclD/venXQvjri5F/N0V5eEFIR7mT0qmfRBI9XuBfdiJXIv
5km4c8QtIEEQhBFKBABBEIQRSgQAQRCEEUoEAEEQhBFKPAQWRoR9NbupqTh3t7MxhKIoaLX3
ThtsXv5CZmTNvtvZEH5EIgAII0Knt53qjsq7nY17WnFqyd3OgvAju3eaH4IgCMKPSgQAQRCE
EUoEAEEQhBHq1gKAqhAMBJBCcsS7KHKIQCDI3Z9wQkWOZH3KfpLPjdPtu+1jBQMB/P7ANauh
qfj6vPgCwaFbFRmvx0NQirxcO9vakH/QMr218rlub1VFUSLf393diU9Sbnk/QRB+OBE/BO5t
a2Tzth3IOgMhfx8pY2axfMFETh3cztFqB0adBr9fomTWIuZOKACg/uwRtu8+jjnKQkgTx0sv
PM6VhR1PHdzO0XMOdEoIfXQKCxcuYFTK918MvrfhFO9/fhSbxYjk95OSV8KSxXMx0cM7aw/y
s2eWRpRO48n9VAbzWb5gDABVx/dy6EwtcrCPIAasRj2546cTG2gmvmQhuXHG8I6Kj3Xvf0yP
rEGrSKi2FH6yahk2o4bjX2/i6KUeFH8fc5etoiw3DSXoZdO6tfQEtfQFVFY98xPSYiwD+QiX
UwtGXXhNteSCUh6ZO4Wda9/iwVf/gaQIp5JRAm4criCZKYnDf0COrHxudL3dTeXsrwuxdP7k
iPJzYMfH5DzwSzL7zt3SfoIg/HAiCgBqyMv7b71D0cKVTB07Cqmvl0utbgC6OlspnfcQhfF6
+txdfPjO+5SW/H8Yui7w7vp9rH7+GbISbLRc7hyyLOSV/fKiVS5fLOfdP77Nq3//G5LMepRQ
kG6nC53JRnzM1ZXDZCmI2+vDYrVhMmrxB0KYTeGKVwoG0RmMSH1dxCWP58H5BUiBPj7f9CGn
80uZnm9j4azwqmNySELV6vC5ewiEICExfqArJAX8ePr8uN1eZN3VJnbumIkkjSqm7sguLsp5
PDArH5M1mqNfHcMoDWqKqzLZ46ZSUJiNXpX4Yt17HK91MTW+jW1HW/j1Ky8S6qzhjx+up+i/
/DvqjnyFQ7bz0lP3U3N4G598tpe/efqh68qpMD58qXTGcHAIBa72LmQpSLfTidEaQ2zUleCh
0ufxEEJLlM2Kr6uWHd84eHbZfWh1BowGHZIko9dp6PMHsFmulg+EeyWeXjdakwWbxTRsfgZf
7yh7NmXGcEs+JElotRp6XC40Bgtxg66h3+vBH1Lw+LwoKlgj3M/ndROQVCwWMwajEe2Q9agF
QbgdEQWAnvozBNMmsnhGSbgSj43BnhZ+TwViEhOxJxlx62XM+vAi8GeOHWbiAysYl5sBQExs
3JA0VSAmPpFUu4nUtAz8XQ4OHa3n4ekpfPLRR3gVPZLPS/Hcpdw3IZ8+ZzNr1mxCZ4slEIrh
5efn86cP9/M3L68A4MD2NUx4+HlAxRoVh91uJ+hzYzGawgvLy2627T3FX+dm0XD8ANuOnMcW
bSLocVE0+1EWTS6gq6maTzZ/jTnKRm9LA6NmlA7k1xIViyUKnFEWrKE4kpNvMCuiLorpU8ej
qirenk78fhmrWU/T2fOUzlxEclwUxE1gbPw2GnqCnKu9xOIlrxBltTBh/hK2/re3kHiIKw17
FYhJSMCeNPwEXXKgl7UffEwfevxeDwsf+ynjRsVxbNdGjtf1YDFAQWEZtdWHqG/1sTHQRfa4
Mmbk2/js0CXUzkY6/HG8/PyCgfJRpD42rl1Dj6QDKcD9T71Mdqz+ptfb7TjHqUYtWanTOLBz
LedaA5i0WnqcTpb+9FUK7RbOHfmSXSfqiLKaabjUzriI9jNTefAz9pQ7iLaacTtdPP1Xf03i
vTWJpiD8RYooAHQ0t5OdXoAGOLJnCxUXWjGlFPLcioXogO3r3uMbnUxrYx2jFzxJvB46ujvJ
n3rjdYGvVTQ6l20Xmqg5XkWvbTQvrbqPgLORf35tA1PH/wf2fb6elEkPsWRqAa7uHrTIdLQ7
B/Z3uXqQAS0Gzhz9jO7G/Ti7WlGjiliVGwdqB+2tXQAEPC7iCqeyalEZSvsZ1h+rg8l5bF23
nilLX2ZifgpVX2/k0m3emva11fDOxp10tTQRN2YBE7NjOXyql4RC+8BnklJSkEIqvZ0e7An9
rXZdFGmxQ5u2V8r3sDHcR8kZN5vFM8cOvF9zZA+BpFJeXD4bV8MJ3ty+m4JVZXx+up3f/PJF
oo0yfQEtZXl61n7TyqplC9DqDag9F9m/62tmLFjGE/MmosM7UD61J/bQpqbw0rNLkL0u9Fbt
dfm59np3BX109V8OZ1cHU+Y/wYS8NMq3r6O+1U2+rYd1uyp46ZWfkRprZeO7LaiA8h375Vm6
WLe3hl+9+jIpMRY2vPsa4omBIPwwIgoA1mgzvh4vAGMnzCIjp4V/XXsCVoACTJ33APmxOnq7
HOzYvpvWmRMxmy24vX4gsqllvV4fZkMqjvZ6Js64D6NOizEph4J0DV4ZOhx+lv9kDHodJNkT
IdTB8M9AQ+QXTWPh7Dz8fb0c3LmDkxfamFWovfp5FdJHZWMzGZCsNjQ4Qe2jLZjOC0UZaACz
0QChiLJ+HUNsGsuWPYrH2c7unTs5UV2GzWTCG5QGPuPzhW+hmW1mpJACBi0QwuMZetAr5VsQ
F75UlqihPam2rm46GjrYuK4ZlD76fEY87c3kj55EYowVAKMZpJAZvU6PyWwGQEIlc8xkVj48
G70GCHkHyqeppZ2Jsx/DatSDMWnY/Fx7vYc2yPXk5GRi0IHVZKJbo8HvcpA6ZjyZieHnPAbD
cOMPrt9P8nYzauw40hNi+vcTv10UhB9KRKOAknIKqKr8Fqc3QEy8ncystIH7+SqQlJpGVlYW
48qmkBbrp9snUZiTzaG9uwn2N9dCUuj6Crs/kYDHyY59pxhTko/NZMTR3BJOO+SjtaMPgwaM
NgVHhwcARVZQ0aAbGFqkEJKuVJwqUbHJZGZmUTB6HCV5abQ4uiM4SwO6kIu+/gzLtzIyZVCj
XZH8hLQmsrKyGDt+Mg/PLuXCxUukZSZz/uyZ/lavh0v1bpKjDSQnxXOqogEAT9slXDGJAw/K
w2cTLt/MzEwyMzNJjIsacmijUU9Kzhjmzp3L3PkP8vzy+Rit0bS3O7gypkiRFUAlGBoaXBIS
4sKV/zWizWZamh39GVBQlKtX7kbX+7vojGZ6XK6B1rsa4YgjndlKW0MjnkCIULAPj8cf0X6C
IHy3iJpTpsQ8lpYm88c/vcGE0jH0tdZhjo0HwAAc2L6ZarOOHmcn3VIay+OMWCfeR8rJ13nj
rfcpzEqitqaXl//qqYGWoh7Yt20jFYYQ7Z3dpI5dxPicOILRM/j6j5+wK3QfzrpyLEXTidPD
7Pn38eF7b9M8eSyOBifPvPQodrmRnXv24XLUc/aSiwX9OTpXsZ/17koC7h4cXU4efW45EMB4
5YQ0oF6ptTX9/9MYmTguljff/YiJhckcPnCGwvnjhy+QQZXmlfOotGhRVQvzZmSzbtu3jC4a
jQU/x49Vcv/TvyA5y4jxy//Duq0GQh3niSmdh92sZcrsefyfN9di8M7k/PH9zF/8zJCoPDh9
gNSCMu6bMhaNNhwmSqdOZ+9bGzluCaDzdtIYTOCV1fNIDu3ngzWbSTb7iMmaxazieNqqPmXn
1ybikjKYlAnqkCPpBsqndOZs9v3xQzZ7m/G1O5ix4hny4gw3vd6BLj1Xu0xXe1ua/rIyxucS
17uJjzZvJ1nr4fTFNoq1GjTam+9niMmhLA3efestzCYdDY09XH1ELgjC9xH5kpBKiKaGOrp6
PBiMFtIyR5EQY6Wns5XWrp5wYjoD6ZmZRJnDVUko4KW2th6fJBMTn0JOVspA3enqbKWtf7+o
2CTSUhMHqqPu1kbqmtrQmqIYM2Y0FqMOUGltrKO1240tzk5BTjpdjnrqmjuITrATZdKSnDEK
jb+H2qbWK6dHYmoGSbE2QKaxoZ1R2Wn0OTsIGOOItxlQpT5aXQHS7PHIQR/nqs8joSUuJobo
pFQSo81DiqHP2YEXK/Z4W/95tNDW1dv/rpG8gkzamhrpdPaiajQk2DPIzgjf++/r6aD6Qh0a
vZWxJcVY+m+DdFyupa65A0tcKuOKsodUy4PLCcAck0B2mp12RxNxqVkYteBqb6be0YFWbyYz
O4eEaAtBXy81NfWENHqycvOJt5lob67lcnsPyZk5pMUbae+RSE26ckvpavkA9Ha1Ut/cit4U
RX5BPqb+rsKNrrcccNPeGyLNHk9Hq4O4lHQMGvA5O/AZY0mwGfG5uzh/sQGt0UaMTU9qVh4G
2fMd++npdfYQkIKoGg1b33uT5X/9D9hv8SHwa9t/z6GO/be20wizsuwplo557J5bEexeXKXs
XszT7SwJKdYEFu5tsocP3lmDL6SgqBK6mGxefHrZsLeubkYEgO8mAkDk7sU8iTWBhX97dFGs
fvopurpdoDGQnJpyy5W/IAjDEwFAuOeZrdFkWKPvdjYE4d8cMRmcIAjCCCUCgCAIwggV8S2g
7tZmmhxtqDojyelZpNvjvnunfqqigFaLuHUrCIJw74ioB+Btu8Cf3/6A2rZumi5Vsn7dzlv6
kWz94QMcr+/57g8KgiAIP5qIegDNZyvJKF3IYw9NB8DX14fq7aTich+lo0cB0O1owEMsydEy
J06eoU+C9JzRZNpUzlRX0tUqobRFk1k4nvRYLeXHjnKxuYOswhKmlo0GyU35uQa8Xa10ekKU
jB9LW91FOnolps6aR3qi7WZZFARBEG5RRD2A1MLR1J/ayfa9h2hu6cRktaIhxOb319AjhX/S
v2/7ehxemYNfbqChz0iaPZ7qcxcwGPSEFBU0WrQaLTqdlvKDX3DwXBulpWMo37OJYxfakXub
+WDNBoKmeFL0Lt56+yN8hlhSzF627j50RwtBEARhJIooAMRmlfDLF59G6axl3cfv8fGmvWhs
qcwsjeLA6TpkfweVrSYm5ieCRsXrdmOwxvHQ4jlYk9IYl5POqMJSpk6bSmqsiTMnTzN5xiTM
ZhuTivOoOlsFQPGUWSyYOZnJU8vIHz+FRbOmMnnyOJwe1x0tBEEQhJEo4ofAKVkFPJJVwILe
Lt7+w7/Q0jeX2QsW8j/f309hyE7ehOmYtDD3wSeJLS/n0L4v6QqYePWVF65LS5X8VJ4+xWUD
yLJKQUEaoDD4MfHA3+J3yoIgCHdERD2ApvKTHK88T5fTRa/bRVBRMWg1WJOLKDJ38N6248yc
GV5NqubCBbJHl7H6qdVYeupxy6DXa7l8qYbeHidev0RyZgaJaQUsfuAB5sycQowlXNmLul4Q
BOHHE1EPICYpni8/28EZgwXJ52Pyw0+TbA7HjjkzJ3H+m3ZyEsLzYoTc7WzefBaLQUP82PnE
6yF20nQOrNnEpk3VTFq0kvseeYJNG7eyue4UQUlh9v1L0Bgk0uzhSdO0RhupSeG1azUGK6Mz
0+/EuQuCIIxokU8Gp6qEZBlN/4NcAGdHC3u+2ETs+GUsmjhq4KOhUBBZBqPJOHBTR5FlQoqK
8cqCHqpCUAqh1xvQigVehTtMTAb33cRkcJG7F/N0ZyeD02iuS/jMt/tQEscxZ/yoIdv1eiPX
5kGr02EcvNKJRovRaEQQBEG4O77XZHD3LX/qh8qHIAiC8CMTcwEJgiCMUCIACIIgjFBiPQBh
REiyJTNWW3K3szGEoihotfdOGyzJlny3syD8yMSSkMKI4HA4SE+/t4YT34sjSUSeInMv5ul2
RgHdO80PQRAE4UclAoAgCMIIJQKAIAjCCCUCgCAIwgglRgEJI0KHpx1Xa/fdzsYQkiRhMBju
ah7sUcnYo8Ton5FKBABhRNh/abeYC2gYK8ueYmWZ+EX/SCVuAQmCIIxQIgAIgiCMUCIACIIg
jFAiAAiCIIxQkT8EVkM01dfR0d2DzmghPTMbe3wUzs4W2rt6AdBo9aRnZhFlCc/zHwp4uXTx
Eu5AiLikVPKz0wcWiJG83bgCJuwJNk4d2E3+rIXE6IYesvnSeey5RZh+wDClKgpoB68+fGsG
ny9ARm4hUUYtrU011NQ5iErKoLQ4Hx2AGqKmqhxHVx8Z+UXkZ9j6+nYHAAAgAElEQVSHpNXa
WEPIFEdmStLANndnG44uN7mFBRjvVHiWe9my4xTLH5k/sEnyOqltbgf6r2PWKKLMtzZCpdPR
QFNLB1qjhZy8AnQ9tZxo0TF/8mgC7i7a+1SyBp3rQHb6Wvm2opu504u/33kJgnBLIqxiVA5/
vp6PNn9Fp6uX2rMnWL/jWwBOHdzB/uOVVFdVcXD3Tv70zjqCCqiSj0/efZPdRyrodXWy+4u9
yINS7G08wYGjjQDUXarAr1x/1HNnTg+7/fuoP3yA4/U9t73/wR1rOXjyLJWVlVRWVNIbVOht
ruL1dzegGIwc+mINX524CED14Z1s2HUcoyHEmrf/xMU275C0dq5/hzc++JTQoG27t3zMH/7l
dVwyd44a4Ej5pSGbehtP8eln+6k+V803e7/kX9/8EK8U+TRRDWe/5Y23P6G5s4faiqNUVLcQ
6GnlUkMzACFPO5XnLw+7r+Lr5uLl4d8TBOHOiagHEOiu44sz7fz7v32FOGu4de/z+QGQgZkP
LqUkyQSqxB/++3/FJYPn1B46DDm8+sJyjFqYf5+M7kYH0Gg4f/ooRxwtJI8aw+QJReg1kDum
CLMWFMlN+bkGvF2tdHpClIwfS1vdRTp6JabOmkd6oo3OlgbOna/BG1TIKiimOC8Dv7uLEyfP
0CdBes5oMm0qZ6or6WqVUNqiySwcT3qslvJjR7nY3EFWYQlTy0aD5Ka+tRebxkdNYw8zZ03u
j5QqXW0eVvy7x0kc1Dj+escBpj38FPMm5zC1MJ7fvnWA+yfnc2DvEZ781T+QG28mQfWw79sT
FD427+qOphQKDL1cbPcxNtmCEuzmXKeR4lHRaAgH0YrKSlrbuzBFxzNx4iRiLFqqTleBxs+l
umYSsouZObGIoMtBUy8UjkoHZKoq6yguKRi2XPoL/ZqLIFM4bg4rlowFNcSmd/6ZimY3mRoH
CalZnD9bQVxyIbnp0VSeOMb5plaSswqZNrkUkzbIp5t2sOLFv2NsZiygIssqrgt1aPqPo7PE
UpQX/gaE/B7Kz5TT7fYzavQ4cm2agdwEPN1U1HQweULRbffSBEGITEQ9gM66CxSVziDOaqSj
tYmamho6XW4gXI1cbqjlwoXz7N2xhUDGBOJ0cLG+gZn33TdwG0Onu2H1DwS52NBNQWEeJ79c
x7dnw63BA9s20CuD3NvMB2s2EDTFk6J38dbbH+EzxJJi9rJ19yEAas9XoZrjSU+OZdtHb+Dw
yhz8cgMNfUbS7PFUn7uAwaAnpKig0aLtX9u4/OAXHDzXRmnpGMr3bOLYhXbk3iY2bFzP2x9u
wxNUGWgHqwFaWlyc+nYfB785Qr2jE4CODhfji8PLYlqS8oj3dBNS+uhWMsmONwOQN7aIblf7
0NOWYPaUUo4dLQeg+exx0komYevvE6hBF2cvtJKemYWvuZyNu74FFD77+ANO13SQN7qAw5+v
xRUCr6OaA8er+xNW2Llj/w3L5UaunKciywQkBaNBy9F9O/jo4484WtkEGg2VB3fw1el6iouL
aSrfyxd7y1F8HbhjRzMmM7Y/Bc3AutFXeB3V7Dt6FlDYtel9TtY6SbbH0dDYNPAZOeBhw4fv
0+pTReUvCD+CiHoAfW4/ZpMNgMu1VZw9V0d1t5X/8R9+ihY4e/oYbQaFdkcz8TlTUFXw+33Y
bOYIs2Fk6fIlJBsg3dzH+lNVzCvJQKO5GjSKp8xiwczJSF1WzvYlsGjWVKTuKPZsOQvAuIlT
uFhTh7M3iM2qodsbAo2K1+3GYM3gocXjsJqNjMtJpzmtlKkl4fvxX548zeSHnsds1jGpOI/y
s1VMmpdCW4efv/nbvyIrKWpQPnU8+tyzBBXo7bzMB2/uYtXP/pqgL4hBrx34jC1Kj0YJIukM
AxFWZ7ENW9gZJZO5vGsN0iPTOX68gqnLX+Ho2R0AaK12Zk3K53J7N9Z4O61NHeHSSiniJysf
RgOcP7YHWQWtZuhzDZ1Oc8NySR92Fls9lce34249QqDPjWwdRXGajXpC2FLG88TDM9Br4IMN
5Tz+0n9mVIyBwlEx/PbPX7Fs4iwMNsvNK21Nf0nIPRyrlfnP/88jmPovr9RVjau7g60bPkaT
MYOHZ465WUqCIPxAIgoA9gw7tQdqUClhwqwHmTCtk//yP7cB4VtAi5Y/SUmSCVny8cEf/4k6
10LsCUlcvFRPSUpRRBm5UnnoTUZUrr/xP7h6G/j7SpNVDbL+nddJLJlHbmoi8TExoIG5Dz5J
bHk5h/Z9SVfAxKuvvHBduqrkp/L0KS4bQJZVCgrSAIXiSZOuqfwBjYFxZRP7X0wkOuSmqrqZ
2MRo2rp82FMtqCE3rT2g0UcTFeigTwarDtwtTag64/XnZUpgXEqIisYmLvXE8miylaP97zWe
2c+6b+pYNHsq5hgdpuZwz0gbwUNs9SblMjyFjNzxzJ2Ri95kJS01BaNOAxhYdH+48gdQQlqi
LeGvjd4cgyGkoI9JpK+5Hm9Ixab/jpwpMlpLDMZrOoStLU0E/E7mPPuwGJomCD+SiP6txeaU
YWw5zZeHztDt6qHN0YLSv46MBnB1dtDa2kpzUwMdzgA2k5ayqdM4vXMzlZeacTm7qSq/wI1v
Pih0d3Xj6mpn6xd7yMouAGDwUjU3fRyp9NHgsjB72kSSE6x4PB4Aai5cIHt0GaufWo2lpx63
DHq9lsuXaujtceL1SyRnZpCYVsDiBx5gzswpxFjCFZhGc31FFuppYMuX39LW2U13RysVFxuw
p8QztrCAXV9sx+V2c2L358SXjUWPgcI8PTv2n8HT6+SLLw9QMm78sNmfPm0SW95+g+wJU/oj
soIKtFx2kFM8jaKCbOQ+90D5DVcWBqOZnl4nHo+b2nMVuKQblwsMFwcUEhIzyM/PJzszDeNA
j0bD4KJIGxXLV/vP0NfXR/mBXVgzU0Efz4wCHes/3UNHl5PW5noam51DM3rlb30syXI9h8/W
4XJ1U9vUAkBRyWRe/c0vOLbxXU7Vtg5bToIg/LAi6gFoDFG88PILbP5sB5uqT6L4/cybPweA
5KQ0vtm/nXNaDcGQwvRHnyUjSo82agwvPrGA7Tu2YLaaUbXJFI0fPZCmwZpIUqIVgKTkVA58
tgWdRsKaNpEFE/MAyCwswqABjcFKmj18y0ZrtJGalNifLyujM9NBF8viSals3rgRRdEQl5aD
zaCh193O5s1nsRg0xI+dT7weYidN58CaTWzaVM2kRSu575En2LRxK5vrThGUFGbfvwSNQRo4
3mBaayImz0E+/bQagyoRlTeT6cWpGORF5DWsZcP69fhDOp76SXh45aJHf8KajzeyvtaENr6E
+ROyh6SXMioLDZA8ZiK5SSeZMS08DDIlqwirDkqnzebM2i/Y1GzDGBVPdqod0JCdkzaQhj11
FAYNRI8aR0LgBBs2bkJnNJGVmXrDckFrZeyo1CF5MdiuXo/BklKyhwzDnffQatZ/sokNl8/g
CWpY/cTDgIZFK15gx7ZP2by5HjUYYMaix0iMTyU1KTxYwHzlb42BVc88zebPdnDeaCImazyj
ptlJS0oiJjWPF15czaYvdlOU8zRW0RUQhDvq1paEVFWkkIRWp0cX4VqmiiIjKyp6vf4mty1U
FEVBVlQMt7Cc2bVpBANBdHrDkAeQoVAQWQajyThwfEWWCSkqRkP/sVSFoBRCrzeg1X7348dQ
SAI0Q5deU2X8/iA6g2nQ8wCQQxJBScZkNhNB0teRQyFkVcUYwayRihwiGFIwDTrXG5XL96Eq
MoGghMFoQnfNSYUkCY1O953fD1UJX4Pbv9635rXtvxeTwQ3j2sng7sWlDkWeInM7S0Le2r8+
jQaD4fr72Dej1er47lihifBzN0/DOMwF0euNXFseWp1u6D1ojRajMfLz0uuHqYw1OswWy3Wb
dXoDluE+HyGdXn/j4bPX0Or0mK/78PDl8n1otDrM1x8IAH2E0xtrtDoMooUvCHeV+CcoCIIw
QokAIAiCMEKJACAIgjBCfe8AoMjyzYdoDiL53Djdvlve70bkkEQgKH3vdARBEEaiyB4Cyy7+
/IcPMUbbkCUJfVQKyx5dQmKUiS/Xvcf01S8RH0FKjSf3UxnMZ/mCMbe03/UUKg7uYF9FE1aj
FkUTxeNPP0mCOdJ4plBf5yAnN/N2Di4IgvBvQmQ1pirhNsSxbOlSli1byihjOzsPnAagZOYC
bFoABUkK4fe66ejoJBi6+mteKeDH6XThdnuRQ+ot7OfD5XThDwSQBm2X3ZdZf7CGRx97nMcf
f4xp43MJKSpSMIAyqDsQDARQgaDfi9Ppwh+UAJWgv4/NG3bg9/vxB4LhNKUgHe1t9Hh8V06a
YFAi6PfS0dFJIKQQ9PfR2dFJQLqTU3UKgiD8OCJuf+vMFpLsduRQkNgoC47+ivbk3s+Y9+xv
0Hoa+Zd3t2CzRKFRAmjtRbz8+CK6mqr5ZPPXmKNs9LY0MGpGaUT7tdVXsH7rXqJiogl4eil9
4BlmjQ7/AAxFRg6paLQ6YuISGD8lPMf83s3vETV+BVPyE1AkJ2++vp1nn5zGB2t3YIuNxu9V
+ckvn+P4tk1cbm9gw8aNaGKzeer+8az94GP60OP3elj42E8ZNyqaNa/9L/zRSegI4lN0mDQ6
tBoJNS6Pnz/x4A97JQRBEH5kEQeAzppy3nzTiafXSVefyit/tQoAZ3snkhqeulg2JbDqyZXE
mGX+9z+vBxS2rlvPlKUvMzE/haqvN3KpvyF/8/1ktqxdz8yVv6IsL4XK7RtoC17tAehis1g+
NZN1H76PNSqBOQsWUlKYSVFBPh/s3c/k/BU0lx9Dl55B69kKTCnFPL1yLr1d3Vi0OuavWMmZ
+jWsWrUKrUZLzeEvCCSV8uLy2bgaTvDm9t2M++VyugMmnn7xSZKi4Xe/fYPVv/4Z9hgdv/vH
PyE98SC3P7pfEATh7ov4IXBseh5Llixh+YrHmFGQxL7DZ677TKI9lYQYK3qjGZNOA2ofbcF0
phZlYNDrMRuHrzKv248gvZpRTCpMR6/TYTIZrsmojmkPruRXLz3H3CmFfPHRW1Q2e0grno6x
7RSNvUEOHz3FrJmTyRxXhtRaydtvvMXh8ovIIQW9wYher8NsMmE0Gmjr6qajvpqN6z7h60Pl
9PkC4aNY4khJiEZnMGOLjic1MQadwYhBEbeABEH4yxdxD8BgjSIzM/zQNFHv4k+7G4Dp37UX
upCLvqCCzahFViJd3kuP0d9Gs9NLZqwJZ68HzdXpb1CkPnr9WuLiEimZNBN38wUaGjoozcxl
0czxfLV1O52eRB5PjyLk0/GzV39BV3s7e7au5/ioYuYWRaEEgiiEI6DRqCclp5C508JzEE0J
/MDLkAmCINyDIgwAGnoazrNhw3pCUoCWyy1MmL8s/I726pQA6qB2ukYDaIxMHBfLm+9+xMTC
ZA4fOEPh/PHfvR8GFt9fxrp33yE2xoLTUcekMQ8NfEbxtvLWm1vILhyNVePhTFUHT/8yHYDi
mfPZ+Pf/nbLHXkUPnDl9gPK6XsbmptHtkRhrMwB6koztrN+6k5iYOOZNnc7etzZy3BJA5+2k
MZjAK7kpQ6fMHPy3XiuGngqC8BcvssngVInaC7VI/S+tsYlkpCahBdodTcSlZqGXvbT3SKQm
xQEKl5vbyMhMQw76OFd9HgktcTExRCelkhht/s79XM4uZDk8QVzl7k9Ry1ayaGz/Q2BVoc3R
RHtXDypaUjJHkZIQE34r5OdffvdPrP7rvyfVpkfye6itraPXGyDWnkZhTgYawOtsp6b+MsbY
ZMbmZeBqb6be0YFWbyYzO4eEaBOOy+2kZ6QOyRcoNDW2kDkqQ6xa9RdETAY3PDEZ3O25F/N0
O5PB3dpsoD+i3Z++TW1HiKCk4JcNPP/z50k03/zEfJ0NvPfJViyZZTy/fN5NPyuMLCIADE8E
gNtzL+bpzs8G+iOa/8jTFHd0IcmQmJyM1fTdWdVb41m85FGysrN+hBwKgiD8ZbtnA4DOYCY1
PeOW9jFYYyjIj7lDORIEQfi3RUwGJwiCMEKJACAIgjBC3bO3gAThhzQvfyGLJj5wt7MxhCRJ
GCJcQe1OsUcl39XjC3eXCADCiGCPSiY9Nf1uZ2OIe3EkiTCyiFtAgiAII5QIAIIgCCOUCACC
IAgjlAgAgiAII5R4CCyMCPtqdlNTce5uZ2MIRVHQau9OG2xe/kLmFyy8K8cW7h0iAAgjQqe3
neqOyrudjXtGcWrJ3c6CcA8Qt4AEQRBGKBEABEEQRigRAARBEEaov4gAoMjyba3ApcgyP8pq
B6pCwO8nKIWGbJalIB6PF/k2VphU5QDdTve1W5FlsR6xIAg/jMgeAssuNnx5hlUPzb+ygXVv
reOxl3+Cr+EUH3x+FKvFSMAfZNzMhcyZUDiwWtapg9s5es6BTgmhj05h4cIFjEqJvaVMfrnu
Paavfon4W3xkvWvdGxQueZm8+OHnW3G3tRKMSiTRdvV99+UqPtlxCFQZjy9IjM2KISGX51bM
57P3X6ctZARVBb2dnz7/KL6OZrZs205QYyDodVM67xHmjM/D293M2k82ojVZUa3J/GTVo1j0
V9cQO3FwOwkli8mNGz5voZ56vjjg4NnlC65ulHt540+f8/Kvn2b4vRTq6xzk5GZe986ODZtY
vOrxH+Wpf/iat2DUaUBVmXr/Kkqy7uQ03Tc+b0EQbiyyHoAq0dzaMWiDQuOlJgCkvi7iksez
dNlSHn5wPoc//4A6Z3Dgk12drZTOe4ily5ZSmmHi3T++Tae/v6Wsyjg7O+js7rnawldlelxO
et1elP6NJTMXYLuSU1XB3eOi1+0lEAwvUimHJEKKgrvHSWeXkysN7vGz7ifFphv2WHJIovbY
AY5caMfn8xHqb6ZbknJZtmwZj8wfj9sQx9KlS3lo3iRQfVTU+1m2dCnLli1j2cNz0AM11eWM
KpvNqlWrePzRxXy1/jMkYPeWNSSVLuapp54iylPLnhN1Q4rU2dmKV1IAlWBQIhT009nRjtcf
HDhPSb7So1Dx+wKouijuf3AmV1ZTDvo8tLW14wtI4XT8fWzesAO/348/EBxyvLam5ut6UaFg
AJfTiafPf3WbJKGoEAz4Bno0UsCHy+nCHwgghZQbX7trr/nSpSxdupT8ZGs4v34v7e3teK6c
IyrBQBBQ8fV5CSnhsgj6vXR0dBIIKQT9fXR2dBKQrvZ8Aj4vTqcTf/C7z1sQhBuLuEGo3nAF
XBVLVBz2JDsk2ZkwOovmdg958Qn970JMfCKpdhOpaRn4uxwcOlrPsnm57Nm8hvMdPpD9ZJQt
ZNnsYvZu+ZgLnRJGPaQXTuWB2aWc3PsZ8579DUbVz7b1a3G4FcxGDd1KAn/74nIajh9g25Hz
2KJNBD0uimY/yqLJBVSfPsiE9HxsyNcda3piiL0V1fjqeuiuNFN236OUZsWgN1lISbYg6brQ
m8wkJ4dnS5TddQQSkrBaLej0JixmIwAT5iwZGMstdYdQTHo0BLnYoPLK8+OwaOGh++fx530V
PDw9b1CpXRFizWuvIcVEodVqcPbpefXXLw65MDXH97CvQcNLK+fwzcEz5Bfk0ttaw4efbMdo
M+MJ6njuxWc4/dkmLrc3sGHjRjSx2TyzdM4Nr6fscfD6+9uw2Uz0uXuYvHgl08ZkcmDnJ9jz
i/jqy8PMuu9RsmN7Wb91L1Ex0QQ8vZQ+8AyzRscNc+3GDTm3mPgE7ParE5152ur4cM1W9FE2
PN4gS594loI0C598/DljcxS+repk+XM/Ze8b/xd/dBI6gvgUHSaNDq1GQo3L4+dPPEhr1RG2
fFOJyaCjpyfAyud/yvldkZ+3IAhXRRwAOi+W88Yb3f2vFBy+K+9o6HW20dBgxd/bwYlzrTzz
0I27+0Wjc9l2oQlfh8TRyxJ/9YsX0UlO/vBPb+GZOZoTRy7w5N/9J1Kitbg84Raos70TSQVH
xUEueKz8/JnlWPQS//zaegACHhdxhVNZtagMpf0M64/VweQCXK4eZMDXceG6Yy34b/+R+ePP
40ifzcKxiRiMN5+VMeD2YpGcbNq0CW+vi4xxc1m6YBJarRZVDnL22H62fn2c5U8+hz7kwWO2
Y+nvtUSlpKGT626YdodP5clnV5Fuj2Hdn3+PW4Z4whVpS80JPvn6PD9/9UU0gMvpBGDPji2M
f/Ap5oxJ4+T2j9n9TTWPrVjJmfo1rFq1Cq3m5p07rTmBFSseIzragqvxFGsPH2XamEycXe3s
r/Lwk6dWk5OWwLv/6y1mrvwVZXkpVG7fQFtQGbY8PTPHEdV/SD1QW1WOFBP+euWOLePA9s3k
z3+MRROyaarcz7rPd/Mff/YInRf2c0w3g9VPPkFylI7ugImnX3ySpGj43W/fYPWvf4Y9Rsfv
/vFPSE88SFzWaB5bORqLXsvprzZx7FQjy27hvAVBuCriABCbkceSJVd+OSjTXrNuIImai8cI
eWvQm2w88vRL/3979x0fxXknfvwz26XVSqu+6qggkBCIYsBUE2MbHBdswA33c5xz7nIXx/ld
yl3unEuuOHbapVxy7t3YVAM2xQRMMUUICwkJ9d77qq22zvz+WKEuWAzYJHref/BiRzPP851n
d+c788zs8xAXMHGxfX39GLQWbG2tWK1t7Nq+BSTodzmweTQsvH46Oza/i05rZNktNxMeOnS/
oL2xkxkLlhPorwdUaAe7hSA6PgGjXovL34hE54g6x61LVqPXadBqdRgMhovuv39UOt/9+1QA
ejoaeeOll6meN5PEAJndm9+muE3Ng994ioRIM8h96GUnMt4+No+tlwt1TOiMIcRFeq+Y9P6G
wWutwpzjVJ7s456//yERJgPgGtyms6WV5uyj1OeCzdqBJqYHjVaHRqPG4MMQw46+Dvbv3omk
N6JWHMjKUDvf+8iDpFpMQD/dUjxzp0YjAXq9FtVE7elhMAEA9PRY6fSoQYFYj0J7m4u1sxJR
SZAwYz7KXu/nx2OM5aF712EyaAAXaj8zkSEmwIXRFIwlNBBwoZW9XUAdLdXs3JeF0WTEYW0m
OFC+pP0WBGGIzwlA628kLu78ZOsu9Oc7onExZ8HtrFudNvHGA0c0R28new7lsOCeb6PxFGIM
tbB02TIkYP7c6zCpPMxdtZ5MRx+NNcW898Eenv3eo4PF+Af5UVdSgjsjEmdvJw4fn67R6LRj
61JDO+D2sc+4r8uK5B+Iv05DaGQM4WYtDpdCefYBiqxG/vYb6zGen7he5UeIupGq9n6SQv0o
LyggLMTiW7DDxKdmkBnYz9ED+0nesA6jbtg+6XUkz5lPcrABkPFIBkBBdgwlngvJP3YQXcL1
rL1hBoq9gf/dnHW+ZMJCTYP/19mbqevsIzZIT2d3L1LUxO15nhvIvH45GWFDB2Sd3kFju43A
CH/snY04VN620hlDBg7+vjm0ZycLb/sWGbHBNOXtIauFS9pvQRCG+PjNk8beAdBIA/3Y4/xt
VAWHdm7hrNZNS1sHlrSVzJpiRuWeRZT7EH8+cpoYs4ri0hoeePIB3n15I1MzMpC6awkM8Z4V
Syrv0SVh3mJ48VVeebkYteSmUzGcD2/oHoU0+M+gwIRx6nrqW4RER7Llo+3oO5OJTlvM9JiR
XVfDS2ktz2fbsXNMT5tKb30FDaokEs069hQV4rEFsXPbZu+KuhDuWXsLy29cyMbXXmfJ3CQO
f1bEhr9bPWHZE70wGoNYfsfteLa+yzubPuLxDUNlLFyylM279+Ccl0ZrXRUhKbOIi5pDmK6F
TTv2Ehho5tYVC4eK9bSzaeP7qFDQh01hVmgYdVmfc0rXRmFBAS7D+clSVMPuT2i56eZMPnj9
NYIC/ehsqGTu9FsnbM/zXV4SMPrO8MJlS3n/rddZsXg2uccPs/CG9ePs+6jXw/+v8cYVGhbK
55+for3ARn7hOeLmJAGaifdbEIQJSYriw5Pyiou6JiuxUeEDC2RqaxqJjY/BbevEatcRHmIc
d1NrWxPN7V0ABASFEWUJHTxLs/d1UlZWjUdSEWaJIzrCTFtDDXVNbaDSkjh1GmajnpaGWsyW
OCRHLz0ONy67HYk+Xn7nCP/8vcewdbbi0JkJNmpRXDaarA6iws28+/vnuflvf0C4dry6gpEU
N5UlxVj7PSRMnU7IsFNs2dVHXZuN+IF9VmQ3DbXVtFp7Uau0JCSnEOivo62plvYu29AOq/2Y
mhKPCg8VhQW0dtuxxKeQEBUyol062xrRBUZi1EFDfQvRMd4rhLamBgIjotF4+mjpcmEJM6N4
HJSX1RGfHM4vf7mFH/3gcUCmvqqMlo5eDAFBTJmSgJ9OQ19nC2VV9eiCIkhLihmsr6m2nC6b
956K1mgmMcpMSUERNhkio6PxeCAuKpzWpgbMkdFoBw6+1s52PB4Zj6yQf2A7SuY6VqaFjt+e
g/vWhC4wAqNu+Pm4TE15Mc3tPRhDLExLiUeNPGLfGfFapr6umZjYqBGfN2eflaKSSlBriY4K
A7WJ8BDjhPt93u92/4rjrYfH/YxORusy72dd5v1jll+Ls5SJmHzjdnu/3xqN71fUviWAa0R3
bS7v7TkJHgmXs4+EuTdxx9JxBrWSe9n05ruUd2v57rcfR/9X0C/Q11zKO1v2oolK42/uXvml
1Xtg+6tUtLpxumTsHi2PPvkooZfQZXOtEAlgJJEALs+1GNMXSQB/Ud/kwLhZbLgnFmuPDa0h
gMjw4PFXlPQsWLaSmyKi/yoO/gC6QAsrV99OdGzcxVe+gm64bQPpre24PBAaEYG//i/qIyMI
wgX8hX2bJUzmUEzm0IuspiUhOfnLCelLovUzkZxkuviKV5haa8ASPbZLRRCEv3x/JefHgiAI
wqUSCUAQBGGS8nEsICdlxcUUFxdTXFxCm7V33NUcPe3UNrddsChZ/gJDY14wNg/1VWVkZ2Xx
+ZmzdNtGPtff09pIfkH54PhAnv4Ojp8uBMXJqWM5jBlbU0+rRIoAACAASURBVHZRXVZM9uls
CorKcHgmuEfu6ebDjw5d2X0RBEH4EvmWADxdvL1xO0WFheRkf8YrL/6J0ua+Mau5e1vIL66/
YFFH9mym6wqOaHz2s3289+EnWG0OKvOO8erG3YMHe8XVz/tvv8pLr27m/LBqDeeyOZpXhr2t
jM1/zhpVmsKxjz7g/Y8O0NXVTdbRA9T3uhmX4uBkXvmV2xFBEIQvme9DQcSnsOauuwAoPrqV
rOwCwmdb6PMPo7+xmG6VmXRLENOSvD/aqqsqxubwUFFWjto/hCVLF9HVWE7+uWJcwVmYVDDr
ugXYW6s5mZWDU2vi+kWLiDD7Y62vGVHu3OmJE8ZlSZnJ3153EyaDFsU1i5/+64u4AR2Qc3AH
muQlxLVlDT6jnldUxk0rN1Cct58lK1cw7AesODoq+Sivhe8/822C/LQoK25AltQ4+7o4lXWC
JqudqTPmMjM1bqC886Uq1JYWcKagGG1gJNcvnI/ZqKeuqogQSxzFBWcxR0wlMe4iN68FQRC+
RJd+D0CRsfc70Kg1NBRks/mDd9h+IAsZ6Gso5FBWAQBZh3aw91guloQkWotPkF1hxeN2o8gu
JCRUag24O3nj1XcwxSQTZezntXc+xA1jyr2QcEssJoMWh62LXZvfJ3LuLLRAb1MJu860c/eq
RSN+lZqUsYSZ8WZMMdO44bqpI8pqqywhLWMxQX7e0fYllRq1JLPng9ep7NUzIzWBT7e8Rm71
yLGGumrzeW3LAWJT0jHYanjtvd14gKxDe3jn3XfIyq8F6UK/lxYEQfjy+XwF0FFWwOuv9+B0
Oentk7nv8XR6TldhU4x8+xv3YjJoaC+sGraFjns33E+kXkLfWEydy0PstDSiI8OYdd18wrXQ
WfYZzrBEYsMCITwD/b6X6HSDSsOIcr08nDl2gj4FYqfMICHGPFhTW10Jmz7YRkD8HB6640bw
ONj2/jZuuesRAjQyiqLg9sho1SrSMjMBSJo+c8w+2nrs+BlG/aLZbeVMo44fPbYCrQSB7g72
nTnL7JihsY/yz+SwYNXdzMmIgxkplDz3c6zuuwA3xshZ3Pv169GI478gCNcYnxOAMTKGZcuW
oVJrCbdYCDDoKPTA3MUrJxjMS0KluvBRT3Z56GitJzs7GyQInz4HvQTKuOVK6A16XB4FSRo6
pe9vr+SlVzdyw90PsXBmEmqgpyafig4P8on9lJ7w0NzTyHvvbuXeDesJUI8JY1B4bAQVh8tQ
yBg2DI2Mxj9gcGgEk9mE4hl5E9zl8WAyBQyEqcUUqBuYzEbLypvFwV8QhGuTzwlAbwoieZwf
V0mqYb1Iox6YGe/5GZXkpqy8AU24HkNEDP46PQuW3ECgQaK8sHD8cr1bkjb3ujHlnfh0H1EZ
K0gM86OlsREkDeFRaXz3e+cnX3FTX1jHnWtWDQ5WNpGgKZno33+eP59MYd60WLpaGjDFJGLu
LyOnrIFpFiP7D3yGJeNOb4wD2yXGxbL10H5mWG6jv7mUYquBtWrvGqLnRxCEa5VvCUDSEW8J
H7PYGBpGaMDQAGqGYAuWMO/0gmGRCYPDMASEhhE8MO/uwiU3snX3Dgr9TKx7dAPrl6WyY9s2