-
Notifications
You must be signed in to change notification settings - Fork 29
/
setup.py
74 lines (63 loc) · 2.51 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
# -*- coding: UTF-8 -*-
import pip
from setuptools import setup
from codecs import open
from os import path
import re
__author__ = '[email protected]'
PACKAGE_NAME = 'chicksexer'
def get_version():
"""get version number"""
version_file = path.join(PACKAGE_NAME, '_version.py')
version_string = open(version_file, "rt").read()
match = re.search(r"^__version__ = ['\"]([^'\"]*)['\"]", version_string, re.M)
if match:
version = match.group(1)
else:
raise RuntimeError("Unable to find version string in %s." % (version_file,))
return version
current_path = path.abspath(path.dirname(__file__))
# Get the long description from the README file
with open(path.join(current_path, PACKAGE_NAME, 'README.md'), encoding='utf-8') as file_:
long_description = file_.read()
# Add dependencies into install_requires if they are on PyPI
requirements = open('requirements.txt', 'r').read().splitlines()
install_requires = list()
for requirement in requirements:
if requirement.startswith('git+'):
# install_requires doesn't work for dependency starting from git+
pip.main(['install', requirement])
else:
install_requires.append(requirement)
setup(
name=PACKAGE_NAME,
version=get_version(),
description='Python package for gender classification.',
long_description=long_description,
url='https://github.com/kensk8er/chicksexer',
author='Kensuke Muraki',
author_email='[email protected]',
maintainer='Kensuke Muraki',
maintainer_email='[email protected]',
classifiers=[
# How mature is this project? Common values are
# 3 - Alpha
# 4 - Beta
# 5 - Production/Stable
'Development Status :: 3 - Alpha',
"Programming Language :: Python",
'Programming Language :: Python :: 3',
'Programming Language :: Python :: 3.5',
'Intended Audience :: Science/Research',
'License :: OSI Approved :: MIT License',
'Operating System :: OS Independent',
'Topic :: Scientific/Engineering :: Artificial Intelligence',
'Topic :: Text Processing :: Linguistic',
'Topic :: Software Development :: Libraries :: Python Modules',
],
packages=[PACKAGE_NAME],
install_requires=install_requires,
zip_safe=False,
keywords='natural-language-processing machine-learning tensorflow deep-learning recurrent-neural-networks lstm nlp python neural-network character-embeddings data-science gender-classification',
include_package_data=True,
)