-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathtrainer.py
235 lines (183 loc) · 9.05 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
# -*- coding: UTF-8 -*-
"""
Command Line Interface (CLI) for training a model.
Usage:
trainer.py random-search [options]
trainer.py [options]
trainer.py -h | --help
trainer.py -v | --version
Commands:
random-search Perform a random-search over hyper-parameter space.
Options:
# universal options for training
--train-data-path=<str> Path to the training data file [default: ./data/name2proba_train.pkl]
--model-dir=<str> Path to the model directory [default: ./models]
--batch-size=<int> The number of samples per batch [default: 128]
--patience=<int> The number of iterations to keep training [default: 1024000]
--valid-size=<float> The proportion of dataset to use for validation [default: 0.1]
--profile Profile the training (profile_train/valid.json will be created)
# options for when not doing random-search (ignored when doing random-search)
--embed-size=<int> The number of dimensions of the character embedding layer [default: 32]
--char-rnn-size=<int> The number of dimensions of the character-RNN layer [default: 128]
--word-rnn-size=<int> The number of dimensions of the word-RNN layer [default: 128]
--learning-rate=<float> Initial learning rate of SGD (Adam Optimizer) [default: 0.001]
--embed-dropout=<float> Dropout rate after the embedding layer [default: 0.]
--char-rnn-dropout=<float> Dropout rate after the character-RNN layer [default: 0.]
--word-rnn-dropout=<float> Dropout rate after the word-RNN layer [default: 0.]
# universal non-training-related options
-h --help Show this screen
-v --version Show version
--verbose Show debug messages
--log-path=<str> Path to the log file [default: ./logs/trainer.log]
Examples:
python trainer.py random-search
python trainer.py --embed-size=128 --char-rnn-size=128 --word-rnn-size=128 --char-rnn-dropout=0.5
"""
import json
import os
import pickle
import logging
from collections import OrderedDict
from random import choice
import numpy as np
from docopt import docopt
from sklearn.model_selection import train_test_split
from tensorflow.python.framework.errors_impl import InvalidArgumentError
from chicksexer.util import set_default_log_level, set_log_level, get_logger, \
set_default_log_path, set_log_path
from chicksexer import __version__
from chicksexer.classifier import CharLSTM, set_log_path as set_classifier_log_path
_RANDOM_STATE = 0 # this is to make train/test split always return the same split
_HOME_DIR = '~/'
_LOGGER = get_logger(__name__)
__author__ = 'kensk8er'
def _get_parameter_space():
"""Define the parameter space to explore here."""
parameter_space = OrderedDict()
parameter_space.update({'embedding_size': [16 * i for i in range(1, 5)]})
parameter_space.update({'char_rnn_size': [64 * i for i in range(1, 5)]})
parameter_space.update({'word_rnn_size': [64 * i for i in range(1, 5)]})
parameter_space.update({'learning_rate': [0.0001 * (2 ** i) for i in range(8)]})
parameter_space.update({'embedding_dropout': [0., 0.01, 0.03, 0.05, 0.1]})
parameter_space.update({'char_rnn_dropout': [0., 0.01, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5]})
parameter_space.update({'word_rnn_dropout': [0., 0.01, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5]})
return parameter_space
def _expand_user_path(args):
"""Expand to absolute path when ~/ appears in the path."""
for arg_key, arg_val in args.items():
if isinstance(arg_val, str) and arg_val.startswith(_HOME_DIR):
args[arg_key] = os.path.expanduser(arg_val)
return args
def _get_training_data(train_data_path):
"""Load training data from the file and return them."""
names = list()
y = list()
_LOGGER.debug('Loading training data...')
with open(train_data_path, 'rb') as pickle_file:
name2proba = pickle.load(pickle_file)
for name, proba in name2proba.items():
names.append(name)
y.append(proba)
return names, y
def _construct_model_name(parameters):
"""Construct model name from the parameters and return it."""
def format_precision(number):
if isinstance(number, float):
return '{:.5f}'.format(number).rstrip('0')
else:
return str(number)
def format_val(val):
if isinstance(val, list):
return '-'.join(format_precision(ele) for ele in val)
else:
return format_precision(val)
parameter_names = list(parameters.keys())
parameter_names.sort() # sort by key in order to have consistency in the order of params
return '_'.join('{}-{}'.format(key, format_val(parameters[key])) for key in parameter_names)
def _random_search(names_train, names_valid, y_train, y_valid, parameter_space, args):
"""Perform random search over given hyper-parameter space."""
def sample_parameters(parameter_space):
"""Sample parameters from the parameter space."""
parameters = OrderedDict()
for key, vals in parameter_space.items():
parameters[key] = choice(vals) # sample a value randomly
return parameters
searched_parameters = set()
best_valid_score = np.float64('-inf')
best_parameters = None
count = 1
try:
while True:
parameters = sample_parameters(parameter_space)
if str(parameters) in searched_parameters:
continue
_LOGGER.info('---------- ({}) Start experimenting with a new parameter set ----------\n'
.format(count))
_LOGGER.info('Hyper-parameters:\n{}'.format(json.dumps(parameters, indent=2)))
# construct the model name
model_name = _construct_model_name(parameters)
model_path = os.path.join(args['--model-dir'], model_name)
_LOGGER.info('Model name: {}'.format(model_name))
_LOGGER.info('Initialize CharLSTM object with the new parameters...')
model = CharLSTM(**parameters)
_LOGGER.info('Started the train() method...')
score = model.train(names_train, y_train, names_valid, y_valid, model_path,
int(args['--batch-size']), int(args['--patience']))
searched_parameters.add(str(parameters))
if score > best_valid_score:
_LOGGER.info('Achieved best validation score so far in the search.')
_LOGGER.info('Hyper-parameters:\n{}'.format(json.dumps(parameters, indent=2)))
best_valid_score = score
best_parameters = parameters
_LOGGER.info('-------- ({}) Finished experimenting with the parameter set --------\n\n'
.format(count))
count += 1
except KeyboardInterrupt:
_LOGGER.info('Random Search finishes because of Keyboard Interrupt.')
_LOGGER.info('Best Validation Score: {:.3f}'.format(best_valid_score))
_LOGGER.info('Best Hyper-parameters:\n{}'.format(json.dumps(best_parameters, indent=2)))
except InvalidArgumentError as error:
_LOGGER.exception(error)
_LOGGER.info('-------- ({}) Skip the parameter set --------\n\n'.format(count))
def _simple_train(names_train, names_valid, y_train, y_valid, args):
"""Simply train a model using hyper-parameters specified in the args."""
parameters = {
'embedding_size': int(args['--embed-size']),
'char_rnn_size': int(args['--char-rnn-size']),
'word_rnn_size': int(args['--word-rnn-size']),
'learning_rate': float(args['--learning-rate']),
'embedding_dropout': float(args['--embed-dropout']),
'char_rnn_dropout': float(args['--char-rnn-dropout']),
'word_rnn_dropout': float(args['--word-rnn-dropout']),
}
model_name = _construct_model_name(parameters)
model_path = os.path.join(args['--model-dir'], model_name)
_LOGGER.info('Initialize CharLSTM object with the new parameters...')
model = CharLSTM(**parameters)
_LOGGER.info('Started the train() method...')
model.train(names_train, y_train, names_valid, y_valid, model_path, int(args['--batch-size']),
int(args['--patience']), profile=args['--profile'])
def main():
"""CLI for performing model training."""
args = docopt(__doc__, version=__version__)
args = _expand_user_path(args)
if args['--verbose']:
set_default_log_level(logging.DEBUG)
set_log_level(_LOGGER, logging.DEBUG)
if args['--log-path']:
log_path = args['--log-path']
set_default_log_path(log_path)
set_log_path(_LOGGER, log_path)
set_classifier_log_path(log_path)
_LOGGER.debug('Configuration:\n{}'.format(args))
names, y = _get_training_data(args['--train-data-path'])
# split into train/valid set
names_train, names_valid, y_train, y_valid = train_test_split(
names, y, random_state=_RANDOM_STATE, test_size=float(args['--valid-size']))
if args['random-search']:
_random_search(
names_train, names_valid, y_train, y_valid, _get_parameter_space(), args)
else:
_simple_train(names_train, names_valid, y_train, y_valid, args)
if __name__ == '__main__':
main()