-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmodel-dbc.py
984 lines (893 loc) · 46.7 KB
/
model-dbc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
import tensorflow as tf
import os
import numpy as np
import time
import sys
from random import randint, sample
from collections import Counter, OrderedDict
from subprocess import call
import io
import scipy.io
import math
import matplotlib.pyplot as plt
onTpu = False
if 'COLAB_TPU_ADDR' in os.environ:
onTpu = True
tpu = os.environ['COLAB_TPU_ADDR']
print(tpu)
if onTpu: # in Colab TPU
from google.colab import drive
from IPython.lib import backgroundjobs as bg
from tensorflow.python.keras.layers import Input, LSTM, TimeDistributed, Dense, Bidirectional, GRU, Layer
from tensorflow.python.keras.models import Sequential, load_model
from tensorflow.python.keras.layers.core import Dropout
from tensorflow.python.keras import initializers, optimizers, regularizers, constraints
from tensorflow.python.keras import backend as K
from tensorflow.python.keras.callbacks import TensorBoard, ModelCheckpoint, CSVLogger, Callback
from tensorflow.python.keras.utils import to_categorical, multi_gpu_model
baseDrive = '/content/drive/My Drive/data/capgMyo/'
drive.mount('/content/drive')
else: # on GPU
import os
if "10.4.17.191" in os.environ["SSH_CONNECTION"]: # MH 8 GPU server / 7
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"]="1,2,3,4,5,6,7"
from keras.layers import Input, LSTM, TimeDistributed, Dense, Bidirectional, GRU, Layer
from keras.models import Sequential, load_model
from keras.layers.core import Dropout
from keras import initializers, optimizers, regularizers, constraints
from keras import backend as K
from keras.callbacks import TensorBoard, ModelCheckpoint, CSVLogger, Callback
from keras.utils import to_categorical, multi_gpu_model
baseDrive = '/home/istvan/capgMyo/'
NUMBER_OF_FEATURES = 128
recurrent_dropout = 0.5
dropout = 0.5
number_of_classes = 12
cellNeurons = 512
denseNeurons = 512
def step_decay(epoch):
initial_lrate = 0.001
drop = 0.75
epochs_drop = 20.0
lrate = initial_lrate * math.pow(drop, math.floor((1+epoch)/epochs_drop))
return lrate
def toTpuModel(model):
# This address identifies the TPU we'll use when configuring TensorFlow.
TPU_WORKER = 'grpc://' + tpu
tf.logging.set_verbosity(tf.logging.INFO)
tpu_model = tf.contrib.tpu.keras_to_tpu_model(
model,
strategy=tf.contrib.tpu.TPUDistributionStrategy(
tf.contrib.cluster_resolver.TPUClusterResolver(TPU_WORKER)))
#tpu_model.summary()
return tpu_model
def toMultiGpuModel(model):
try:
gpu_model = multi_gpu_model(model)
return gpu_model
except:
print("gpu_model error")
return None
def download(db='b', num=20):
for i in range(num):
name = "http://zju-capg.org/myo/data/db"+db+"-preprocessed-" + '{:03d}'.format(i+1) + ".zip"
call(["wget", name])
def unzip(db='b', num=20):
for i in range(num):
name = "db"+db+"-preprocessed-" + '{:03d}'.format(i+1) + ".zip"
call(["unzip", name, "-d", "unzipped-db"+db])
def playground(db='b'):
data = scipy.io.loadmat("unzipped-db"+db+"/020-005-008.mat")
print(type(data))
print (data.keys())
# dict_keys(['__header__', '__version__', '__globals__', 'trial', 'data', 'gesture', 'subject'])
#print (data['trial'])
print (data['data'].shape)
#print (data['gesture'])
#print (data['subject'])
#arr = np.asarray(data)
#print(arr)
def convert(db='b'):
directory = "/home/istvan/capgMyo/unzipped-db"+db
directory_out = "/home/istvan/capgMyo/data/db"+db
for root, dirs, files in os.walk(directory):
for file in files:
if file.endswith(".mat"):
aFile = os.path.join(root, file)
matFile = scipy.io.loadmat(aFile)
np.save(os.path.join(directory_out, '{:03d}-{:03d}-{:03d}.npy'.format(matFile['subject'][0][0], matFile['gesture'][0][0], matFile['trial'][0][0])), matFile['data'])
def dot_product(x, kernel):
"""
Wrapper for dot product operation, in order to be compatible with both
Theano and Tensorflow
Args:
x (): input
kernel (): weights
Returns:
"""
if K.backend() == 'tensorflow':
# todo: check that this is correct
return K.squeeze(K.dot(x, K.expand_dims(kernel)), axis=-1)
else:
return K.dot(x, kernel)
class Attention(Layer):
def __init__(self,
W_regularizer=None, b_regularizer=None,
W_constraint=None, b_constraint=None,
bias=True,
return_attention=False,
**kwargs):
"""
Keras Layer that implements an Attention mechanism for temporal data.
Supports Masking.
Follows the work of Raffel et al. [https://arxiv.org/abs/1512.08756]
# Input shape
3D tensor with shape: `(samples, steps, features)`.
# Output shape
2D tensor with shape: `(samples, features)`.
:param kwargs:
Just put it on top of an RNN Layer (GRU/LSTM/SimpleRNN) with return_sequences=True.
The dimensions are inferred based on the output shape of the RNN.
Note: The layer has been tested with Keras 1.x
Example:
# 1
model.add(LSTM(64, return_sequences=True))
model.add(Attention())
# next add a Dense layer (for classification/regression) or whatever...
# 2 - Get the attention scores
hidden = LSTM(64, return_sequences=True)(words)
sentence, word_scores = Attention(return_attention=True)(hidden)
"""
self.supports_masking = True
self.return_attention = return_attention
self.init = initializers.get('glorot_uniform')
self.W_regularizer = regularizers.get(W_regularizer)
self.b_regularizer = regularizers.get(b_regularizer)
self.W_constraint = constraints.get(W_constraint)
self.b_constraint = constraints.get(b_constraint)
self.bias = bias
super(Attention, self).__init__(**kwargs)
def build(self, input_shape):
assert len(input_shape) == 3
self.W = self.add_weight(shape=(int(input_shape[-1]),), #, self.output_dim)
initializer=self.init,
name='{}_W'.format(self.name),
regularizer=self.W_regularizer,
constraint=self.W_constraint)
if self.bias:
self.b = self.add_weight(shape=(int(input_shape[1]),),
initializer='zero',
name='{}_b'.format(self.name),
regularizer=self.b_regularizer,
constraint=self.b_constraint)
else:
self.b = None
self.built = True
def compute_mask(self, input, input_mask=None):
# do not pass the mask to the next layers
return None
def call(self, x, mask=None):
eij = dot_product(x, self.W)
if self.bias:
eij += self.b
eij = K.tanh(eij)
a = K.exp(eij)
# apply mask after the exp. will be re-normalized next
if mask is not None:
# Cast the mask to floatX to avoid float64 upcasting in theano
a *= K.cast(mask, K.floatx())
# in some cases especially in the early stages of training the sum may be almost zero
# and this results in NaN's. A workaround is to add a very small positive number ε to the sum.
# a /= K.cast(K.sum(a, axis=1, keepdims=True), K.floatx())
a /= K.cast(K.sum(a, axis=1, keepdims=True) + K.epsilon(), K.floatx())
weighted_input = x * K.expand_dims(a)
result = K.sum(weighted_input, axis=1)
if self.return_attention:
return [result, a]
return result
def compute_output_shape(self, input_shape):
if self.return_attention:
return [(input_shape[0], input_shape[-1]),
(input_shape[0], input_shape[1])]
else:
return input_shape[0], input_shape[-1]
# Creating files
def sequenceBatchCreator(batchSize=1024, seq_len=150, strideMode=3, directory_out="numpy_seqs_stride3"):
directory = "numpy"
for i in range (11, 21): # second session
for j in range (1, 9): # 8 gestures
X = []
y = []
for k in range (1, 11): # 10 repetitions
fileName = '{:03d}-{:03d}-{:03d}.npy'.format(i, j, k)
aFile = np.load(os.path.join(directory, fileName))
if strideMode == 1:
stride = 1
elif strideMode == 2:
stride = seq_len//2
elif strideMode == 3:
stride = 50
#numOfSequences = (aFile.shape[0]-seq_len)//stride + 1
for l in range(0, aFile.shape[0]-seq_len+1, stride):
X.append(aFile[l:l+seq_len, :])
y.append(j-1) # cause of to_categorical()
npX = np.array(X)
np.save(os.path.join(directory_out,
'X_{:03d}-{:03d}_{:03d}ms_sequences_{:03d}stride.npy'.format(i, j, seq_len, stride)),
npX)
npy = np.array(y)
np.save(os.path.join(directory_out,
'y_{:03d}-{:03d}_{:03d}ms_sequences_{:03d}stride.npy'.format(i, j, seq_len, stride)),
npy)
def sequenceFixTrainingGenerator(batchSize=1024, seq_len=150, indexForValidation=20, strideMode=1):
directory = "numpy"
for i in sample(range(11, 21), 10): # second session
if i == indexForValidation: continue
for j in sample(range(1, 9), 8): # 8 gestures
X_train = []
y_train = []
for k in sample(range(1, 11), 10): # 10 repetitions
fileName = '{:03d}-{:03d}-{:03d}.npy'.format(i, j, k)
aFile = np.load(os.path.join(directory, fileName))
if strideMode == 1:
stride = 1
elif strideMode == 2:
stride = seq_len//2
elif strideMode == 3:
stride = 50
for l in range(0, aFile.shape[0]-seq_len+1, stride):
X_train.append(aFile[l:l+seq_len, :])
y_train.append(j-1) # cause of to_categorical()
npX_train = np.array(X_train)
yield npX_train, to_categorical(y_train, num_classes=number_of_classes)
def unisonShuffle(X, y):
s = np.arange(X.shape[0])
np.random.shuffle(s)
return X[s], y[s]
def sequenceBatchGeneratorAbsMean2(batchSize,
seq_len,
indexes,
stride,
allNumOfSamples,
meanOf,
shuffling,
standardize,
amountOfRepetitions,
amountOfGestures,
totalGestures,
totalRepetitions,
directory,
dataset,
repetitions,
number_of_classes):
X = []
y = []
# DBC:
# mean: 0.00011763552702395671
# std: 0.008829399359531554
if dataset == 'dbc':
mean = 0.00011763552702395671
std = 0.008829399359531554
if shuffling:
range_i = sample(indexes, len(indexes))
range_j = sample(range(1, totalGestures+1), amountOfGestures)
range_k = sample(range(1, totalRepetitions+1), amountOfRepetitions)
else:
range_i = indexes
range_j = range(1, amountOfGestures+1)
range_k = range(1, amountOfRepetitions+1)
if repetitions is not None: # intra-session
if len(repetitions) == 5: # intra-session
if shuffling:
range_k = sample(repetitions, amountOfRepetitions)
else:
range_k = repetitions[:amountOfRepetitions]
counter = 0
while True:
for i in range_i: # users
for j in range_j: # 8 gestures
for k in range_k: # 10 repetitions
fileName = '{:03d}-{:03d}-{:03d}.npy'.format(i, j, k)
aFile = np.load(os.path.join(directory, fileName))
if standardize:
aFile = (aFile-mean)/std
aFile = np.abs(aFile)
absMeanFile = np.apply_along_axis(lambda m: np.convolve(m, np.ones((meanOf,))/meanOf, mode='valid'), axis=0, arr=aFile)
del aFile
for l in range(0, absMeanFile.shape[0]-seq_len+1, stride):
X.append(absMeanFile[l:l+seq_len, :])
y.append(j-1)
counter += 1
if counter % allNumOfSamples == 0:
#print('\ntraining counter: '+str(counter))
if shuffling:
yield unisonShuffle(np.array(X), to_categorical(y, num_classes=number_of_classes))
else:
yield np.array(X), to_categorical(y, num_classes=number_of_classes)
del X, y
X = []
y = []
counter = 0
elif counter % batchSize == 0:
#print('\ntraining counter: '+str(counter))
if shuffling:
yield unisonShuffle(np.array(X), to_categorical(y, num_classes=number_of_classes))
else:
yield np.array(X), to_categorical(y, num_classes=number_of_classes)
del X, y
X = []
y = []
del absMeanFile
def buildModel(classes, features, cellNeurons, cellDropout, denseDropout, denseNeurons, sequenceLength, stacked=False, bidirectional=False, l2=0.0):
model = Sequential()
model.add(TimeDistributed(Dense(features,
kernel_initializer='identity',
bias_initializer='zeros',
name='customNn',
activation=None), input_shape=(sequenceLength, features), name='td', trainable=False))
if bidirectional:
if stacked:
model.add(Bidirectional(LSTM(cellNeurons, recurrent_dropout=cellDropout, name='rnn', trainable=True, return_sequences=True, kernel_regularizer=regularizers.l2(l2)), merge_mode='concat'))
model.add(Bidirectional(LSTM(cellNeurons, recurrent_dropout=cellDropout, name='rnn_2nd_layer', trainable=True, kernel_regularizer=regularizers.l2(l2)), merge_mode='concat'))
else:
model.add(Bidirectional(LSTM(cellNeurons, recurrent_dropout=cellDropout, name='rnn', trainable=True, kernel_regularizer=regularizers.l2(l2)), merge_mode='concat'))
else:
if stacked:
model.add(LSTM(cellNeurons, recurrent_dropout=cellDropout, name='rnn', trainable=True, return_sequences=True, kernel_regularizer=regularizers.l2(l2)))
model.add(LSTM(cellNeurons, recurrent_dropout=cellDropout, name='rnn_2nd_layer', trainable=True, kernel_regularizer=regularizers.l2(l2)))
#model.add(Attention(name='attention', trainable=True))
else:
model.add(LSTM(cellNeurons, recurrent_dropout=cellDropout, name='rnn', trainable=True, kernel_regularizer=regularizers.l2(l2)))
model.add(Dense(denseNeurons, name='nn', trainable=True, kernel_regularizer=regularizers.l2(l2)))
model.add(Dropout(denseDropout, name='nn_dropout', trainable=True))
model.add(Dense(classes, activation="softmax", name='output_softmax', trainable=True, kernel_regularizer=regularizers.l2(l2)))
#model.summary()
if onTpu:
model.compile(loss="categorical_crossentropy",
optimizer=tf.train.AdamOptimizer(learning_rate=0.001),
metrics=["accuracy"])
multi_model = toTpuModel(model)
else:
multi_model = toMultiGpuModel(model)
multi_model.compile(loss="categorical_crossentropy",
optimizer=optimizers.Adam(lr=0.001, decay=0.0001),
metrics=["accuracy"])
return model, multi_model
class AltModelCheckpoint(ModelCheckpoint):
def __init__(self, filepath, alternate_model, **kwargs):
"""
Additional keyword args are passed to ModelCheckpoint; see those docs for information on what args are accepted.
:param filepath:
:param alternate_model: Keras model to save instead of the default. This is used especially when training multi-
gpu models built with Keras multi_gpu_model(). In that case, you would pass the original
"template model" to be saved each checkpoint.
:param kwargs: Passed to ModelCheckpoint.
"""
self.alternate_model = alternate_model
super().__init__(filepath, **kwargs)
def on_epoch_end(self, epoch, logs=None):
model_before = self.model
self.model = self.alternate_model
super().on_epoch_end(epoch, logs)
self.model = model_before
def getAdaptationModel(modelPath, adaptationVersion, features, seqLen):
fineTuneModel = load_model(modelPath)
# Test optimizer's state:
#print(fineTuneModel.optimizer.get_config())
#print(dir(fineTuneModel.optimizer))
#print(fineTuneModel.optimizer.lr)
fineTuneModel.get_layer('td').trainable = True
if adaptationVersion == 2:
fineTuneModel.get_layer('td').activation = 'relu'
fineTuneModel.get_layer('rnn').trainable = False
if fineTuneModel.get_layer('rnn_2nd_layer') != None:
fineTuneModel.get_layer('rnn_2nd_layer').trainable = False
fineTuneModel.get_layer('nn').trainable = False
fineTuneModel.get_layer('nn_dropout').trainable = False
fineTuneModel.get_layer('output_softmax').trainable = False
if adaptationVersion == 3:
fineTuneModel.get_layer('td').activation = 'relu'
fineTuneModel.name = "existingModel"
newModel = Sequential()
newModel.add(TimeDistributed(Dense(features,
kernel_initializer='identity',
bias_initializer='zeros',
activation='relu'), input_shape=(seqLen, features), name='td0', trainable=True))
newModel.add(fineTuneModel)
fineTuneModel = newModel
if adaptationVersion == 4: # initializer does not work with this initializer cause it is not square
fineTuneModel.get_layer('td').activation = 'relu'
fineTuneModel.name = "existingModel"
newModel = Sequential()
newModel.add(TimeDistributed(Dense(10*features,
kernel_initializer='identity',
bias_initializer='zeros',
activation='relu'), input_shape=(seqLen, features), name='td0', trainable=True))
newModel.add(fineTuneModel)
fineTuneModel = newModel
if onTpu:
multiFineTuneModel.compile(loss="categorical_crossentropy",
optimizer=tf.train.AdamOptimizer(lr=0.001),
metrics=["accuracy"])
multiFineTuneModel = toTpuModel(fineTuneModel)
else:
multiFineTuneModel = toMultiGpuModel(fineTuneModel)
multiFineTuneModel.compile(loss="categorical_crossentropy",
optimizer=optimizers.Adam(lr=0.001),
metrics=["accuracy"])
# Test optimizer's state:
#print(fineTuneModel.optimizer.get_config())
#print(dir(fineTuneModel.optimizer))
#print(fineTuneModel.optimizer.lr)
return fineTuneModel, multiFineTuneModel
def validationAccuracyValues(x):
return(x[-10:-5])
def getBestModel(testUser, workingDirectory):
file_list = os.listdir(workingDirectory+str(testUser))
best = max(file_list, key=validationAccuracyValues)
print('\nBest pre-trained model to start with: ' + str(best))
return workingDirectory+str(testUser) + '/' + best
class WeightsNorm(Callback):
def on_batch_end(self, batch, logs={}):
# Norm clipping:
print(str(math.sqrt(sum(np.sum(K.get_value(w)) for w in self.model.optimizer.weights))) + '\n')
return
def checkdataStatistics():
directory = "/home/istvan/capgMyo/data/dbc"
bigArray = None
isFirst = True
for i in range (1, 11):
for j in range (1, 9): # 8 gestures
for k in range (1, 11): # 10 repetitions
fileName = '{:03d}-{:03d}-{:03d}.npy'.format(i, j, k)
aFile = np.load(os.path.join(directory, fileName))
if isFirst:
bigArray = aFile
isFirst = False
else:
bigArray = np.concatenate((bigArray, aFile), axis=0)
mean, std = np.mean(bigArray), np.std(bigArray)
print(mean)
print(std)
print(np.max(bigArray))
print(np.min(bigArray))
newArray = (bigArray - mean)/std
mean2, std2 = np.mean(newArray), np.std(newArray)
print(mean2)
print(std2)
print(np.max(newArray))
print(np.min(newArray))
plt.hist(bigArray, bins=10)
plt.title("Histogram")
plt.savefig('histogram-all.png')
plt.close()
plt.hist(newArray, bins=10)
plt.title("Histogram")
plt.savefig('histogram-new-all.png')
def preTrainingModel(trainingUsers,
testUsers,
allNumOfTrainingSamples,
trainingStepsPerEpoch,
allNumOfValidationSamples,
validationStepsPerEpoch,
amountOfRepetitions,
amountOfGestures,
preTrainingNumOfEpochs,
trial,
batchSize,
totalGestures,
totalRepetitions,
directory,
testUser,
workingDirectory,
trainingDataset,
testDataset,
trainingRepetitions,
testRepetitions,
number_of_classes,
saveCheckpoints):
base_model, multi_model = buildModel(classes=number_of_classes,
features=NUMBER_OF_FEATURES,
cellNeurons=cellNeurons,
cellDropout=recurrent_dropout,
denseDropout=dropout,
denseNeurons=denseNeurons,
sequenceLength=seq_len,
stacked=True,
bidirectional=False,
l2=0.0)
histories = {}
path = workingDirectory+str(testUser)
if not os.path.exists(path):
os.makedirs(path)
my_training_batch_generator = sequenceBatchGeneratorAbsMean2(batchSize=batchSize,
seq_len=seq_len,
indexes=trainingUsers,
stride=stride,
allNumOfSamples=allNumOfTrainingSamples,
meanOf=mean,
shuffling=True,
standardize=True,
amountOfRepetitions=totalRepetitions,
amountOfGestures=totalGestures,
totalGestures=totalGestures,
totalRepetitions=totalRepetitions,
directory=directory,
dataset=trainingDataset,
repetitions=trainingRepetitions,
number_of_classes=number_of_classes)
my_validation_batch_generator = sequenceBatchGeneratorAbsMean2(batchSize=batchSize,
seq_len=seq_len,
indexes=testUsers,
stride=stride,
allNumOfSamples=allNumOfValidationSamples,
meanOf=mean,
shuffling=False,
standardize=True,
amountOfRepetitions=totalRepetitions,
amountOfGestures=totalGestures,
totalGestures=totalGestures,
totalRepetitions=totalRepetitions,
directory=directory,
dataset=testDataset,
repetitions=testRepetitions,
number_of_classes=number_of_classes)
filepath=path + "/e{epoch:03d}-a{val_acc:.3f}.hdf5"
#lrate = LearningRateScheduler(step_decay)
if saveCheckpoints == True:
if onTpu:
modelCheckpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=0, save_best_only=True, mode='max')
else:
modelCheckpoint = AltModelCheckpoint(filepath, alternate_model=base_model, monitor='val_acc', verbose=0, save_best_only=True, mode='max')
callbacks_list = [modelCheckpoint]
else:
callbacks_list = []
startTime = int(round(time.time()))
print("\n##### Start Time with test user "+str(testUser)+": "+str(startTime))
histories[testUser] = multi_model.fit_generator(generator=my_training_batch_generator,
steps_per_epoch=trainingStepsPerEpoch,
epochs=preTrainingNumOfEpochs,
#max_queue_size=5,
verbose=2,
callbacks=callbacks_list,
validation_data=my_validation_batch_generator,
validation_steps=validationStepsPerEpoch,
use_multiprocessing=False)
endTime = int(round(time.time()))
print("\n##### End Time with test user "+str(testUser)+": "+str(endTime))
toLog = str(preTrainingNumOfEpochs) + ',' + str(seq_len) + ',' + str(stride) + ',' + str(batchSize) + ',' + str(mean)
with open(workingDirectory+"history.csv", "a") as myfile:
myfile.write(str(endTime)\
+ ',' + str(trial)\
+ ',' + str(testUser)\
+ ',' + str(max(histories[testUser].history['acc']))\
+ ',' + str(max(histories[testUser].history['val_acc']))\
+ ',' + str(endTime-startTime)\
+ ',' + toLog\
+ ',' + str(amountOfRepetitions)\
+ ',' + str(amountOfGestures) + '\n')
del histories
del base_model, multi_model
del my_training_batch_generator, my_validation_batch_generator
def adaptModel(fineTuneUsers, testUsers, allNumOfFineTuningSamples, fineTuningStepsPerEpoch, amountOfRepetitions, amountOfGestures,
allNumOfValidationSamples,
validationStepsPerEpoch,
numberOfFineTuningEpochs,
trial,
batchSize,
totalGestures,
totalRepetitions,
directory,
testUser,
workingDirectory,
trainingDataset,
testDataset,
trainingRepetitions,
testRepetitions,
number_of_classes):
base_model, multi_model = getAdaptationModel(modelPath=getBestModel(testUser, workingDirectory), adaptationVersion=1, features=NUMBER_OF_FEATURES, seqLen=seq_len)
histories = {}
path = workingDirectory+str(testUser)+'-adapted'
if not os.path.exists(path):
os.makedirs(path)
my_training_batch_generator = sequenceBatchGeneratorAbsMean2(batchSize=batchSize,
seq_len=seq_len,
indexes=fineTuneUsers,
stride=stride,
allNumOfSamples=allNumOfFineTuningSamples,
meanOf=mean,
shuffling=True,
standardize=True,
amountOfRepetitions=amountOfRepetitions,
amountOfGestures=amountOfGestures,
totalGestures=totalGestures,
totalRepetitions=totalRepetitions,
directory=directory,
dataset=trainingDataset,
repetitions=trainingRepetitions,
number_of_classes=number_of_classes)
my_validation_batch_generator = sequenceBatchGeneratorAbsMean2(batchSize=batchSize,
seq_len=seq_len,
indexes=testUsers,
stride=stride,
allNumOfSamples=allNumOfValidationSamples,
meanOf=mean,
shuffling=False,
standardize=True,
amountOfRepetitions=totalRepetitions,
amountOfGestures=totalGestures,
totalGestures=totalGestures,
totalRepetitions=totalRepetitions,
directory=directory,
dataset=testDataset,
repetitions=testRepetitions,
number_of_classes=number_of_classes)
filepath=path + "/e{epoch:03d}-a{val_acc:.3f}.hdf5"
#modelCheckpoint = AltModelCheckpoint(filepath, alternate_model=base_model, monitor='val_acc', verbose=0, save_best_only=True, mode='max')
#csv_logger = CSVLogger(workingDirectory+'log_u' + str(testUser) + '-adapted.csv', append=True, separator=',')
#callbacks_list = [modelCheckpoint]
startTime = int(round(time.time()))
print("\n##### Start Time with test user "+str(testUser)+": "+str(startTime))
histories[testUser] = multi_model.fit_generator(generator=my_training_batch_generator,
steps_per_epoch=fineTuningStepsPerEpoch,
epochs=numberOfFineTuningEpochs,
#max_queue_size=5,
verbose=2,
#callbacks=callbacks_list,
validation_data=my_validation_batch_generator,
validation_steps=validationStepsPerEpoch,
use_multiprocessing=False)
endTime = int(round(time.time()))
print("\n##### End Time with test user "+str(testUser)+": "+str(endTime))
toLog = str(numberOfFineTuningEpochs) + ',' + str(seq_len) + ',' + str(stride) + ',' + str(batchSize) + ',' + str(mean)
with open(workingDirectory+"history-adapted.csv", "a") as myfile:
myfile.write(str(endTime)\
+ ',' + str(trial)\
+ ',' + str(testUser)\
+ ',' + str(max(histories[testUser].history['acc']))\
+ ',' + str(max(histories[testUser].history['val_acc']))\
+ ',' + str(endTime-startTime)\
+ ',' + toLog\
+ ',' + str(amountOfRepetitions)\
+ ',' + str(amountOfGestures) + '\n')
del histories
del base_model, multi_model
del my_training_batch_generator, my_validation_batch_generator
#fineTuningEpochList = [1, 2, 4, 8, 16, 32, 64]
#fineTuningRepetitionList = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
#fineTuningGestureList = []
fineTuningEpochList = [100]
fineTuningRepetitionList = [10]
fineTuningGestureList = [12]
preTrainingNumOfEpochs = 200
seq_len = 150
stride = 70
mean=11
#seq_len = 40
#stride = 19
#mean=11
totalGestures=12
totalRepetitions=10
def generalScenario(validation, training):
for trial in range(513, 514):
for numberOfFineTuningEpochs in fineTuningEpochList:
for amountOfGestures in fineTuningGestureList:
for amountOfRepetitions in fineTuningRepetitionList:
###################################################################################
# seq_len = 40
# stride = 19
# mean = 11
# -> allNumOfFineTuningSamples is a multiple of 51
# 1020 worked pretty well on GPU
###################################################################################
# seq_len = 150
# stride = 70
# mean = 11
# -> allNumOfFineTuningSamples is a multiple of 13
# 12*5 * 13 (780) would work pretty well on TPU both for training and validation as well
###################################################################################
#if amountOfGestures * amountOfRepetitions >= 80: # this is dynamic (20 for: sl 40, 51 for sl 150) haat....
batchSize = 780
#else:
# batchSize = amountOfGestures * amountOfRepetitions * 13
if validation == 'inter-subject':
allNumOfFineTuningSamples = 1 * amountOfGestures * amountOfRepetitions * ((1000-mean+1-seq_len)//stride + 1)
fineTuningStepsPerEpoch = allNumOfFineTuningSamples // batchSize
allNumOfValidationSamples = 1 * 12 * 10 * ((1000-mean+1-seq_len)//stride + 1)
validationStepsPerEpoch = allNumOfValidationSamples // batchSize
allNumOfTrainingSamples = 9 * 12 * 10 * ((1000-mean+1-seq_len)//stride + 1)
trainingStepsPerEpoch = allNumOfTrainingSamples // batchSize
directory = baseDrive+"data/dbc"
workingDirectory = baseDrive+'data/inter-subject/dbc/'
trainingUsers = list(range(1, 11))
for testUser in trainingUsers: # LOSOCV for inter-subject validation
fineTuneUsers = [testUser]
testUsers = [testUser]
currentTrainingUsers = trainingUsers.copy()
currentTrainingUsers.remove(testUser)
if training == 'pre-training':
preTrainingModel(trainingUsers=currentTrainingUsers,
testUsers=testUsers,
allNumOfTrainingSamples=allNumOfTrainingSamples,
trainingStepsPerEpoch=trainingStepsPerEpoch,
allNumOfValidationSamples=allNumOfValidationSamples,
validationStepsPerEpoch=validationStepsPerEpoch,
amountOfRepetitions=amountOfRepetitions,
amountOfGestures=amountOfGestures,
preTrainingNumOfEpochs=preTrainingNumOfEpochs,
trial=trial,
batchSize=batchSize,
totalGestures=totalGestures,
totalRepetitions=totalRepetitions,
directory=directory,
testUser=testUser,
workingDirectory=workingDirectory,
trainingDataset='dbc',
testDataset='dbc',
trainingRepetitions=None,
testRepetitions=None,
number_of_classes=number_of_classes,
saveCheckpoints=True)
elif training == 'fine-tuning':
adaptModel(fineTuneUsers=fineTuneUsers,
testUsers=testUsers,
allNumOfFineTuningSamples=allNumOfFineTuningSamples,
fineTuningStepsPerEpoch=fineTuningStepsPerEpoch,
allNumOfValidationSamples=allNumOfValidationSamples,
validationStepsPerEpoch=validationStepsPerEpoch,
amountOfRepetitions=amountOfRepetitions,
amountOfGestures=amountOfGestures,
numberOfFineTuningEpochs=numberOfFineTuningEpochs,
trial=trial,
batchSize=batchSize,
totalGestures=totalGestures,
totalRepetitions=totalRepetitions,
directory=directory,
testUser=testUser,
workingDirectory=workingDirectory,
trainingDataset='dbc',
testDataset='dbc',
trainingRepetitions=None,
testRepetitions=None,
number_of_classes=number_of_classes)
if validation == 'inter-subject-split':
directory = baseDrive+"data/dbc"
workingDirectory = baseDrive+'data/inter-subject-split/dbc/'
trainingUsers = list(range(1, 11))
for testUser in trainingUsers: # LOSOCV for inter-subject validation
testUsers = [testUser]
if training == 'pre-training':
currentTrainingUsers = trainingUsers.copy()
currentTrainingUsers.remove(testUser)
allNumOfTrainingSamples = 9 * 12 * 10 * ((1000-mean+1-seq_len)//stride + 1)
trainingStepsPerEpoch = allNumOfTrainingSamples // batchSize
allNumOfValidationSamples = 1 * 12 * 10 * ((1000-mean+1-seq_len)//stride + 1)
validationStepsPerEpoch = allNumOfValidationSamples // batchSize
preTrainingModel(trainingUsers=currentTrainingUsers,
testUsers=testUsers,
allNumOfTrainingSamples=allNumOfTrainingSamples,
trainingStepsPerEpoch=trainingStepsPerEpoch,
allNumOfValidationSamples=allNumOfValidationSamples,
validationStepsPerEpoch=validationStepsPerEpoch,
amountOfRepetitions=10,
amountOfGestures=12,
preTrainingNumOfEpochs=preTrainingNumOfEpochs,
trial=trial,
batchSize=batchSize,
totalGestures=12,
totalRepetitions=10,
directory=directory,
testUser=testUser,
workingDirectory=workingDirectory,
trainingDataset='dbc',
testDataset='dbc',
trainingRepetitions=None,
testRepetitions=None,
number_of_classes=number_of_classes,
saveCheckpoints=True)
elif training == 'fine-tuning':
trainingRepetitions = [1, 3, 5, 7, 9]
testRepetitions = [2, 4, 6, 8, 10]
fineTuneUsers = [testUser]
allNumOfFineTuningSamples = 1 * amountOfGestures * 5 * ((1000-mean+1-seq_len)//stride + 1)
fineTuningStepsPerEpoch = allNumOfFineTuningSamples // batchSize
allNumOfValidationSamples = 1 * 12 * 5 * ((1000-mean+1-seq_len)//stride + 1)
validationStepsPerEpoch = allNumOfValidationSamples // batchSize
adaptModel(fineTuneUsers=fineTuneUsers,
testUsers=testUsers,
allNumOfFineTuningSamples=allNumOfFineTuningSamples,
fineTuningStepsPerEpoch=fineTuningStepsPerEpoch,
allNumOfValidationSamples=allNumOfValidationSamples,
validationStepsPerEpoch=validationStepsPerEpoch,
amountOfRepetitions=5,
amountOfGestures=amountOfGestures,
numberOfFineTuningEpochs=numberOfFineTuningEpochs,
trial=trial,
batchSize=batchSize,
totalGestures=totalGestures,
totalRepetitions=5,
directory=directory,
testUser=testUser,
workingDirectory=workingDirectory,
trainingDataset='dbc',
testDataset='dbc',
trainingRepetitions=trainingRepetitions,
testRepetitions=testRepetitions,
number_of_classes=number_of_classes)
elif validation == 'intra-session':
allNumOfValidationSamples = 10 * 12 * 5 * ((1000-mean+1-seq_len)//stride + 1)
validationStepsPerEpoch = allNumOfValidationSamples // batchSize
allNumOfTrainingSamples = 10 * 12 * 5 * ((1000-mean+1-seq_len)//stride + 1)
trainingStepsPerEpoch = allNumOfTrainingSamples // batchSize
directory = baseDrive+"data/dbc"
workingDirectory = baseDrive+'data/intra-session/dbc/'
trainingUsers = list(range(1, 11))
testUsers = list(range(1, 11))
trainingRepetitions = [1, 3, 5, 7, 9]
testRepetitions = [2, 4, 6, 8, 10]
testUser='evenRepetitions'
if training == 'pre-training':
preTrainingModel(trainingUsers=trainingUsers,
testUsers=testUsers,
allNumOfTrainingSamples=allNumOfTrainingSamples,
trainingStepsPerEpoch=trainingStepsPerEpoch,
allNumOfValidationSamples=allNumOfValidationSamples,
validationStepsPerEpoch=validationStepsPerEpoch,
amountOfRepetitions=5,
amountOfGestures=amountOfGestures,
preTrainingNumOfEpochs=preTrainingNumOfEpochs,
trial=trial,
batchSize=batchSize,
totalGestures=totalGestures,
totalRepetitions=5,
directory=directory,
testUser=testUser,
workingDirectory=workingDirectory,
trainingDataset='dbc',
testDataset='dbc',
trainingRepetitions=trainingRepetitions,
testRepetitions=testRepetitions,
number_of_classes=number_of_classes,
saveCheckpoints=False)
elif validation == 'intra-session-separated':
allNumOfValidationSamples = 1 * 12 * 5 * ((1000-mean+1-seq_len)//stride + 1)
validationStepsPerEpoch = allNumOfValidationSamples // batchSize
allNumOfTrainingSamples = 1 * 12 * 5 * ((1000-mean+1-seq_len)//stride + 1)
trainingStepsPerEpoch = allNumOfTrainingSamples // batchSize
directory = baseDrive+"data/dbc"
workingDirectory = baseDrive+'data/intra-session-separated/dbc/'
trainingUsers = list(range(1, 11))
for subject in trainingUsers:
print("subject: " + str(subject))
trainingUsers = [subject]
testUsers = [subject]
trainingRepetitions = [1, 3, 5, 7, 9]
testRepetitions = [2, 4, 6, 8, 10]
testUser=subject
if training == 'pre-training':
preTrainingModel(trainingUsers=trainingUsers,
testUsers=testUsers,
allNumOfTrainingSamples=allNumOfTrainingSamples,
trainingStepsPerEpoch=trainingStepsPerEpoch,
allNumOfValidationSamples=allNumOfValidationSamples,
validationStepsPerEpoch=validationStepsPerEpoch,
amountOfRepetitions=5,
amountOfGestures=amountOfGestures,
preTrainingNumOfEpochs=preTrainingNumOfEpochs,
trial=trial,
batchSize=batchSize,
totalGestures=totalGestures,
totalRepetitions=5,
directory=directory,
testUser=testUser,
workingDirectory=workingDirectory,
trainingDataset='dbc',
testDataset='dbc',
trainingRepetitions=trainingRepetitions,
testRepetitions=testRepetitions,
number_of_classes=number_of_classes,
saveCheckpoints=False)
#generalScenario(validation='intra-session-separated', training='pre-training')
generalScenario(validation='inter-subject-split', training='pre-training')
generalScenario(validation='inter-subject-split', training='fine-tuning')