forked from liuyubobobo/Play-Leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.cpp
97 lines (73 loc) · 2.29 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
/// Source : https://leetcode.com/problems/find-critical-and-pseudo-critical-edges-in-minimum-spanning-tree/
/// Author : liuyubobobo
/// Time : 2020-06-20
#include <iostream>
#include <vector>
#include <unordered_map>
using namespace std;
/// MST
/// Time Complexity: O(E * ElogE)
/// Space Complexity: O(E)
class UF{
private:
vector<int> parent;
public:
UF(int n){
for(int i = 0 ; i < n ; i ++)
parent.push_back(i);
}
int find(int p){
if( p != parent[p] )
parent[p] = find( parent[p] );
return parent[p];
}
bool isConnected(int p , int q){
return find(p) == find(q);
}
void unionElements(int p, int q){
int pRoot = find(p);
int qRoot = find(q);
if( pRoot == qRoot )
return;
parent[pRoot] = qRoot;
}
};
class Solution {
public:
vector<vector<int>> findCriticalAndPseudoCriticalEdges(int n, vector<vector<int>>& edges) {
unordered_map<int, int> index_map;
for(int i = 0; i < edges.size(); i ++)
index_map[edges[i][0] * n + edges[i][1]] = i;
sort(edges.begin(), edges.end(), [](const vector<int>& e1, const vector<int>& e2){
return e1[2] < e2[2];
});
vector<vector<int>> res(2);
int minW = minimum_tree(edges, n, -1, -1);
for(int i = 0; i < edges.size(); i ++){
int index = index_map[edges[i][0] * n + edges[i][1]];
if(minimum_tree(edges, n, i, -1) > minW)
res[0].push_back(index);
else if(minimum_tree(edges, n, -1, i) == minW)
res[1].push_back(index);
}
return res;
}
private:
int minimum_tree(const vector<vector<int>>& edges, int n, int del_index, int use_index){
UF uf(n);
int res = 0, e_num = 0;
if(use_index != -1)
uf.unionElements(edges[use_index][0], edges[use_index][1]),
e_num ++,
res += edges[use_index][2];
for(int i = 0; i < edges.size(); i ++)
if(i != del_index && !uf.isConnected(edges[i][0], edges[i][1]))
uf.unionElements(edges[i][0], edges[i][1]),
e_num ++,
res += edges[i][2];
return e_num == n - 1 ? res : INT_MAX;
}
};
int main() {
return 0;
}