forked from liuyubobobo/Play-Leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.cpp
155 lines (123 loc) · 4.56 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
/// Source : https://leetcode.com/problems/number-of-valid-move-combinations-on-chessboard/
/// Author : liuyubobobo
/// Time : 2021-11-03
#include <iostream>
#include <vector>
#include <set>
using namespace std;
/// Simulation
/// Time Compelxity: O(9^n * 7*n * n)
/// Space Complexity: O(n)
class Solution {
private:
vector<vector<pair<int, int>>> dirs;
public:
int countCombinations(vector<string>& pieces, vector<vector<int>>& positions) {
dirs.assign(3, vector<pair<int, int>>());
// rook
dirs[0] = {{0, 0}, {1, 0}, {-1, 0}, {0, 1}, {0, -1}};
// queen
dirs[1] = {{0, 0}, {1, 0}, {-1, 0}, {0, 1}, {0, -1},
{1, 1}, {1, -1}, {-1, 1}, {-1, -1}};
// bishop
dirs[2] = {{0, 0}, {1, 1}, {1, -1}, {-1, 1}, {-1, -1}};
int n = pieces.size();
vector<int> p(n, 0);
vector<pair<int, int>> pos(n);
for(int i = 0; i < n; i ++){
pos[i].first = positions[i][0] - 1;
pos[i].second = positions[i][1] - 1;
if(pieces[i] == "queen") p[i] = 1;
if(pieces[i] == "bishop") p[i] = 2;
}
vector<int> d(n), s(n);
return dfs_directions(n, p, pos, d, s, 0);
}
private:
int dfs_directions(int n, const vector<int>& pieces, const vector<pair<int, int>>& pos,
vector<int>& d, vector<int>& s, int index){
if(index == n)
return dfs_steps(n, pieces, pos, d, s, 0);
int res = 0, L = dirs[pieces[index]].size();
for(int i = 0; i < L; i ++){
d[index] = i;
res += dfs_directions(n, pieces, pos, d, s, index + 1);
}
return res;
}
int dfs_steps(int n, const vector<int>& pieces, const vector<pair<int, int>>& pos,
const vector<int>& d, vector<int>&s, int index){
if(index == n){
vector<pair<int, int>> cur = pos;
vector<int> left = s;
return dfs_check(n, cur, pieces, d, left);
}
int res = 0;
if(d[index] == 0){
s[index] = 0;
res += dfs_steps(n, pieces, pos, d, s, index + 1);
}
else{
int dx = dirs[pieces[index]][d[index]].first, dy = dirs[pieces[index]][d[index]].second;
int cx = pos[index].first, cy = pos[index].second;
for(int i = 1; i < 8; i ++){
if(in_area(cx += dx, cy += dy)){
s[index] = i;
res += dfs_steps(n, pieces, pos, d, s, index + 1);
}
else break;
}
}
return res;
}
bool dfs_check(int n, vector<pair<int, int>>& pos, const vector<int>& pieces,
const vector<int>& d, vector<int>& left){
bool all_zero = true;
for(int i = 0; i < n; i ++)
if(left[i]){
pos[i].first += dirs[pieces[i]][d[i]].first;
pos[i].second += dirs[pieces[i]][d[i]].second;
all_zero = false;
left[i] --;
}
if(all_zero) return true;
for(int i = 0; i < n; i ++)
for(int j = i + 1; j < n; j ++)
if(pos[i] == pos[j]) return false;
return dfs_check(n, pos, pieces, d, left);
}
bool in_area(int x, int y){
return x >= 0 && x < 8 && y >= 0 && y < 8;
}
};
int main() {
vector<string> pieces1 = {"rook"};
vector<vector<int>> pos1 = {{1, 1}};
cout << Solution().countCombinations(pieces1, pos1) << endl;
// 15
vector<string> pieces2 = {"queen"};
vector<vector<int>> pos2 = {{1, 1}};
cout << Solution().countCombinations(pieces2, pos2) << endl;
// 22
vector<string> pieces3 = {"bishop"};
vector<vector<int>> pos3 = {{4, 3}};
cout << Solution().countCombinations(pieces3, pos3) << endl;
// 12
vector<string> pieces4 = {"rook", "rook"};
vector<vector<int>> pos4 = {{1, 1}, {8, 8}};
cout << Solution().countCombinations(pieces4, pos4) << endl;
// 223
vector<string> pieces5 = {"queen", "bishop"};
vector<vector<int>> pos5 = {{5, 7}, {3, 4}};
cout << Solution().countCombinations(pieces5, pos5) << endl;
// 281
vector<string> pieces6 = {"rook", "queen", "rook", "rook"};
vector<vector<int>> pos6 = {{3, 8}, {6, 8}, {5, 3}, {2, 3}};
cout << Solution().countCombinations(pieces6, pos6) << endl;
// 55717
vector<string> pieces7 = {"bishop", "queen", "bishop", "bishop"};
vector<vector<int>> pos7 = {{3, 7}, {7, 3}, {2, 4}, {4, 1}};
cout << Solution().countCombinations(pieces7, pos7) << endl;
// 15126
return 0;
}