forked from 1Konny/VIB-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolver.py
273 lines (231 loc) · 11.5 KB
/
solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import numpy as np
import torch
import argparse
import math
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.autograd import Variable
from torch.optim import lr_scheduler
from torch.utils.data import DataLoader
from torchvision import transforms
from tensorboardX import SummaryWriter
from utils import cuda, Weight_EMA_Update
from datasets.datasets import return_data
from model import ToyNet
from pathlib import Path
class Solver(object):
def __init__(self, args):
self.args = args
self.cuda = (args.cuda and torch.cuda.is_available())
self.epoch = args.epoch
self.batch_size = args.batch_size
self.lr = args.lr
self.eps = 1e-9
self.K = args.K
self.beta = args.beta
self.num_avg = args.num_avg
self.global_iter = 0
self.global_epoch = 0
# Network & Optimizer
self.toynet = cuda(ToyNet(self.K), self.cuda)
self.toynet.weight_init()
self.toynet_ema = Weight_EMA_Update(cuda(ToyNet(self.K), self.cuda),\
self.toynet.state_dict(), decay=0.999)
self.optim = optim.Adam(self.toynet.parameters(),lr=self.lr,betas=(0.5,0.999))
self.scheduler = lr_scheduler.ExponentialLR(self.optim,gamma=0.97)
self.ckpt_dir = Path(args.ckpt_dir).joinpath(args.env_name)
if not self.ckpt_dir.exists() : self.ckpt_dir.mkdir(parents=True,exist_ok=True)
self.load_ckpt = args.load_ckpt
if self.load_ckpt != '' : self.load_checkpoint(self.load_ckpt)
# History
self.history = dict()
self.history['avg_acc']=0.
self.history['info_loss']=0.
self.history['class_loss']=0.
self.history['total_loss']=0.
self.history['epoch']=0
self.history['iter']=0
# Tensorboard
self.tensorboard = args.tensorboard
if self.tensorboard :
self.env_name = args.env_name
self.summary_dir = Path(args.summary_dir).joinpath(args.env_name)
if not self.summary_dir.exists() : self.summary_dir.mkdir(parents=True,exist_ok=True)
self.tf = SummaryWriter(log_dir=self.summary_dir)
self.tf.add_text(tag='argument',text_string=str(args),global_step=self.global_epoch)
# Dataset
self.data_loader = return_data(args)
def set_mode(self,mode='train'):
if mode == 'train' :
self.toynet.train()
self.toynet_ema.model.train()
elif mode == 'eval' :
self.toynet.eval()
self.toynet_ema.model.eval()
else : raise('mode error. It should be either train or eval')
def train(self):
self.set_mode('train')
for e in range(self.epoch) :
self.global_epoch += 1
for idx, (images,labels) in enumerate(self.data_loader['train']):
self.global_iter += 1
x = Variable(cuda(images, self.cuda))
y = Variable(cuda(labels, self.cuda))
(mu, std), logit = self.toynet(x)
class_loss = F.cross_entropy(logit,y).div(math.log(2))
info_loss = -0.5*(1+2*std.log()-mu.pow(2)-std.pow(2)).sum(1).mean().div(math.log(2))
total_loss = class_loss + self.beta*info_loss
izy_bound = math.log(10,2) - class_loss
izx_bound = info_loss
self.optim.zero_grad()
total_loss.backward()
self.optim.step()
self.toynet_ema.update(self.toynet.state_dict())
prediction = F.softmax(logit,dim=1).max(1)[1]
accuracy = torch.eq(prediction,y).float().mean()
if self.num_avg != 0 :
_, avg_soft_logit = self.toynet(x,self.num_avg)
avg_prediction = avg_soft_logit.max(1)[1]
avg_accuracy = torch.eq(avg_prediction,y).float().mean()
else : avg_accuracy = Variable(cuda(torch.zeros(accuracy.size()), self.cuda))
if self.global_iter % 100 == 0 :
print('i:{} IZY:{:.2f} IZX:{:.2f}'
.format(idx+1, izy_bound.data[0], izx_bound.data[0]), end=' ')
print('acc:{:.4f} avg_acc:{:.4f}'
.format(accuracy.data[0], avg_accuracy.data[0]), end=' ')
print('err:{:.4f} avg_err:{:.4f}'
.format(1-accuracy.data[0], 1-avg_accuracy.data[0]))
if self.global_iter % 10 == 0 :
if self.tensorboard :
self.tf.add_scalars(main_tag='performance/accuracy',
tag_scalar_dict={
'train_one-shot':accuracy.data[0],
'train_multi-shot':avg_accuracy.data[0]},
global_step=self.global_iter)
self.tf.add_scalars(main_tag='performance/error',
tag_scalar_dict={
'train_one-shot':1-accuracy.data[0],
'train_multi-shot':1-avg_accuracy.data[0]},
global_step=self.global_iter)
self.tf.add_scalars(main_tag='performance/cost',
tag_scalar_dict={
'train_one-shot_class':class_loss.data[0],
'train_one-shot_info':info_loss.data[0],
'train_one-shot_total':total_loss.data[0]},
global_step=self.global_iter)
self.tf.add_scalars(main_tag='mutual_information/train',
tag_scalar_dict={
'I(Z;Y)':izy_bound.data[0],
'I(Z;X)':izx_bound.data[0]},
global_step=self.global_iter)
if (self.global_epoch % 2) == 0 : self.scheduler.step()
self.test()
print(" [*] Training Finished!")
def test(self, save_ckpt=True):
self.set_mode('eval')
class_loss = 0
info_loss = 0
total_loss = 0
izy_bound = 0
izx_bound = 0
correct = 0
avg_correct = 0
total_num = 0
for idx, (images,labels) in enumerate(self.data_loader['test']):
x = Variable(cuda(images, self.cuda))
y = Variable(cuda(labels, self.cuda))
(mu, std), logit = self.toynet_ema.model(x)
class_loss += F.cross_entropy(logit,y,size_average=False).div(math.log(2))
info_loss += -0.5*(1+2*std.log()-mu.pow(2)-std.pow(2)).sum().div(math.log(2))
total_loss += class_loss + self.beta*info_loss
total_num += y.size(0)
izy_bound += math.log(10,2) - class_loss
izx_bound += info_loss
prediction = F.softmax(logit,dim=1).max(1)[1]
correct += torch.eq(prediction,y).float().sum()
if self.num_avg != 0 :
_, avg_soft_logit = self.toynet_ema.model(x,self.num_avg)
avg_prediction = avg_soft_logit.max(1)[1]
avg_correct += torch.eq(avg_prediction,y).float().sum()
else :
avg_correct = Variable(cuda(torch.zeros(correct.size()), self.cuda))
accuracy = correct/total_num
avg_accuracy = avg_correct/total_num
izy_bound /= total_num
izx_bound /= total_num
class_loss /= total_num
info_loss /= total_num
total_loss /= total_num
print('[TEST RESULT]')
print('e:{} IZY:{:.2f} IZX:{:.2f}'
.format(self.global_epoch, izy_bound.data[0], izx_bound.data[0]), end=' ')
print('acc:{:.4f} avg_acc:{:.4f}'
.format(accuracy.data[0], avg_accuracy.data[0]), end=' ')
print('err:{:.4f} avg_erra:{:.4f}'
.format(1-accuracy.data[0], 1-avg_accuracy.data[0]))
print()
if self.history['avg_acc'] < avg_accuracy.data[0] :
self.history['avg_acc'] = avg_accuracy.data[0]
self.history['class_loss'] = class_loss.data[0]
self.history['info_loss'] = info_loss.data[0]
self.history['total_loss'] = total_loss.data[0]
self.history['epoch'] = self.global_epoch
self.history['iter'] = self.global_iter
if save_ckpt : self.save_checkpoint('best_acc.tar')
if self.tensorboard :
self.tf.add_scalars(main_tag='performance/accuracy',
tag_scalar_dict={
'test_one-shot':accuracy.data[0],
'test_multi-shot':avg_accuracy.data[0]},
global_step=self.global_iter)
self.tf.add_scalars(main_tag='performance/error',
tag_scalar_dict={
'test_one-shot':1-accuracy.data[0],
'test_multi-shot':1-avg_accuracy.data[0]},
global_step=self.global_iter)
self.tf.add_scalars(main_tag='performance/cost',
tag_scalar_dict={
'test_one-shot_class':class_loss.data[0],
'test_one-shot_info':info_loss.data[0],
'test_one-shot_total':total_loss.data[0]},
global_step=self.global_iter)
self.tf.add_scalars(main_tag='mutual_information/test',
tag_scalar_dict={
'I(Z;Y)':izy_bound.data[0],
'I(Z;X)':izx_bound.data[0]},
global_step=self.global_iter)
self.set_mode('train')
def save_checkpoint(self, filename='best_acc.tar'):
model_states = {
'net':self.toynet.state_dict(),
'net_ema':self.toynet_ema.model.state_dict(),
}
optim_states = {
'optim':self.optim.state_dict(),
}
states = {
'iter':self.global_iter,
'epoch':self.global_epoch,
'history':self.history,
'args':self.args,
'model_states':model_states,
'optim_states':optim_states,
}
file_path = self.ckpt_dir.joinpath(filename)
torch.save(states,file_path.open('wb+'))
print("=> saved checkpoint '{}' (iter {})".format(file_path,self.global_iter))
def load_checkpoint(self, filename='best_acc.tar'):
file_path = self.ckpt_dir.joinpath(filename)
if file_path.is_file():
print("=> loading checkpoint '{}'".format(file_path))
checkpoint = torch.load(file_path.open('rb'))
self.global_epoch = checkpoint['epoch']
self.global_iter = checkpoint['iter']
self.history = checkpoint['history']
self.toynet.load_state_dict(checkpoint['model_states']['net'])
self.toynet_ema.model.load_state_dict(checkpoint['model_states']['net_ema'])
print("=> loaded checkpoint '{} (iter {})'".format(
file_path, self.global_iter))
else:
print("=> no checkpoint found at '{}'".format(file_path))