-
Notifications
You must be signed in to change notification settings - Fork 12
/
OCRT.py
1227 lines (1030 loc) · 60.7 KB
/
OCRT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from __future__ import print_function, division
import numpy as np
import tensorflow as tf
import cv2
from scipy.fftpack import fft, fftshift, ifft, ifftshift
import scipy.io
import scipy.interpolate
import os
from time import time
class OCRT2D:
def __init__(self, sample_id, save_directory):
# sample_id: a string identifying the sample (basename of the files);
# save_directory: where to save the tf graph after optimization;
# set hyperparameters here or after running the constructor, and then run load_data_and_resolve_constants, which
# may create new variables that depend on the instance variables; finally, run build_graph, which creates the tf
# variables and operations
self.sample_id = sample_id
self.save_directory = save_directory + sample_id
self.tube_diameter = 1.108516 # mm
self.Ascan_numpix = 2048 # how many pixels in one A-scan originally?
self.depth = 2.219226700101120 # maximum imaging depth in air in mm
self.n_back = 1.342 # immersion index
self.wall_thickness = None # used in parametric optimization
self.ths = None # angles in degrees
self.step = None # rk4 step size
self.numz = None # number of rk4 steps to take
self.numy = 1 # number of B-scans per vol (out of plane dimension) used for recon; set to 1, but in the future
# for 3D this would be >1
self.numx_downsamp = None # number of rays after downsampling
self.B_upsample = 2 # number of times to laterally upsample Bscan
self.downsample = 8 # integer factor by which to downsample in z
self.downsample_x = 10 # int factor to downsample in x
self.valid_Ascans = None # some A-scans invalid due to downsampling
self.x_max = None # num of A-scans after upsampling post downsampling
self.z_max = None # len of A-scans after upsampling post downsampling
self.use_Bweights_for_bp = None # eg, to remove the central reflection
self.dy = None # spacing in xy in physical distance (not pixels)
self.angle_step = None # step in degrees between each angle
self.use_multires = None # partway through optimization, change pixel count for reconstruction
self.PSFconv_format = 'gaussian' # 'arbitrary', 'gaussian', or both ('arbitrarygaussian')
self.reduced_shape = None # shape of filtered/unfiltered B-scans prior to flattening
self.sx = 23 # pixel width of convolution kernel (full width)
self.sz = 1 # pixel height of convolution kernel (full width)
self.outer_radius = None
self.Bscan_dims = None
self.outer_index = 0.11047276 # relative index values determined previously empirically
self.inner_index = -0.11068416
self.numiter = 200 # number of optimization iterations
self.size_factor_ = 8 # how many times more pixels on a side for the reconstruction compared to the index map;
# the underscore version is the static version, necessary for defining variables; the non-underscore version is
# a placeholder, for multires optimization
self.TV_reg_coeff = None # the regularization coefficient for the total variation regularization of the
# nonparametric portion of the index map (this one will be a tf.placeholder)
self.TV_reg_coeff_ = 8e-5 # this is the initializing value
self.shift_reg_coeff = 10. # coeff for penalty on spatial shifts
self.tube_radius_change_reg_coeff = 0 # penalty for change in radius
self.imsize = 256 # size of RI map images to be plotted during training; irrelevant to the actual optimization
self.num_y_pixels = 10 # for the reconstruction; this would be of consequence in the future when we implement
# 3D reconstruction
self.batchsize = None # by default, same as len(ths)
self.rotdir = -1 # -1 or 1, depending on direction of rotation
self.numneigh_s = 7 # the size of the neighborhood that contributes to the index approximation (odd number)
self.angle_membership = None # angle membership of each point in Bscan
self.Bweights = None # same size as Bscans
self.external_TV_mask = None
self.internal_mask = None
self.freq_filter = 'sqrt' # which filter to use prior to backprojection?
# binary settings:
self.infer_backprojection_filter = False # after registration, optimize for filter, holding all else fixed?
self.include_attenuation = True # whether to include attenuation in the forward model
self.use_reflectance_model = True # optimize general backreflectance model (ops will be in place regardless)
self.discret_levels = 30 # if using reflectance model angle modulation (e.g., lambertian model),
# how many discretization levels for the angles?
self.use_spatial_shifts = True # optimize Bscan spatial shifts in xz
self.use_parametric_optimization = False # i.e., tube parameters
self.switch_to_nonparametric = False # if you want to switch from tube parameters to general parameterization
self.switch_iter_nonparametric = 200 # switch at what iteration?
self.use_multires = False # switch recon resolution part way through
self.switch_iter = 250 # at what iteration to change recon res
self.final_size_factor = 8 # final recon size (as a multiple of index map size; e.g., if the index map is of
# size (128, 128), and final_size_factor is 4, then the recon size is (512, 512));
# note that with these "switch" options must be implemented by the script that uses this class;
self.use_Bweights = False # Bweights is a tensor the same size as the Bscan data that gives a weight for each
# pixel
self.use_Bweights_for_bp = False # specifically whether to use Bweights when backprojecting
self.use_gpu = False
self.stop_gradient_projection = True # stop the gradient before the ray-gathering step; must be False for
# filter optimization
self.use_interp_projection = True # backproject to nearest neighbor?
self.normalize_across_whole_dataset = False # for backproj; if false, then first normalize within B-scan, then
# across whole dataset; if true, may produce streak artifacts due to ray crossing, but is less expesnive
self.turn_off_all_normalization = False # if true, recon is not normalized, regardless of
# self.normalize_across_whole_dataset
self.use_blur_Bscan_in_forward_pred = True
# trainable variables (but not necessarily trained by default)
self.A = None # index kernel amplitudes to be defined elsewhere
self.A_nonparametric = 0 # 0: initialize flat index on top of parametric index map, or supply an array
self.A_parametric = None
self.sig = .006 # index kernel widths
self.xz0 = None
self.xz_delta_init = None # initial xz_delta (for regularization)
self.xz_delta = None # xz_delta after optimization
self.y_delta = None
self.recon_offset = .15 # single number to add to reconstruction
self.PSF_general = None # if doing arbitrary PSF optimization
self.sigx = 1.3 # sigmax of gaussian kernel
self.sigz = .5 # sigmaz of gaussian kernel
self.h = .1 # height of gaussian kernel
self.attenfact = .02 # attenuation factor
self.attenexp = 3.5 # attenuation exponent
self.angle_mod = None # for arbitrary backreflection model; infer the angle-dependent backreflection model
self.fbp_filters = None # if optimizing filters after registration
# for full rayprop with a kernel-parameterized index distribution:
self.rotmats = None
self.numgauss_s = None # number of gaussian kernels
self.Xc = None # coordinates of the gaussian kernel centers
self.Zc = None
self.Xr = None # spatial window kernels within which to consider
self.Zr = None
self.graph_built = False # has the graph been built yet?
def load_data_and_resolve_constants(self, data_directory):
# 1. load data based on self.sample_id
# 2. derive instance variables that depend on others (e.g., the ones defined in the constructor)
start = time()
self.downsample_x *= self.B_upsample
self.step = 1.0 / self.Ascan_numpix * self.downsample
# load from file
filename = data_directory + self.sample_id + '_data.mat'
data = scipy.io.loadmat(filename)
Bscan_dims = data['Bscan_dims'][0]
Bscans = data['Bscans']
xzcoords = data['xzcoords']
L = data['L'][0, 0]
self.outer_radius = data['radii'][0, 0]
mindists_ = data['mindists']
inds_nonzero_ = data['window']
self.xz_delta_init = data['tweaks']
self.xz0 = data['center'][0]
self.Bweights = data['weights'].astype(np.float32)
if len(Bscans.shape) == 3:
# if there is no volume, since matlab can't store trailing
# singletons, expand dims
Bscans = np.expand_dims(Bscans, -1)
max_angle, self.angle_step = 360, 360. / Bscans.shape[0]
self.ths = np.arange(0, max_angle, self.angle_step).astype(np.float32)
self.numgauss_s = inds_nonzero_.shape[0]
surround_dists_ = mindists_ * inds_nonzero_
inner_dists_ = mindists_ * (1 - inds_nonzero_)
surround_dists_ = surround_dists_.flatten()
inner_dists_ = inner_dists_.flatten()
self.y_delta = np.zeros(len(self.xz_delta_init), dtype=np.float32)
xzcoords = .5 + (xzcoords - .5)
self.dy = xzcoords[0, 1, 0] - xzcoords[0, 0, 0] # spacing in x & y same
# generate interpolation matrix
x_left = np.arange(self.downsample_x)
x_right = self.downsample_x - x_left
z_up = np.arange(self.downsample)
z_down = self.downsample - z_up
normalize = self.downsample * self.downsample_x * 1.0
DR = np.expand_dims(x_left, -1) * z_up.T / normalize
UL = np.expand_dims(x_right, -1) * z_down.T / normalize
DL = np.expand_dims(x_right, -1) * z_up.T / normalize
UR = np.expand_dims(x_left, -1) * z_down.T / normalize
self.interp_weights = np.vstack([UL.flatten(), UR.flatten(), DL.flatten(), DR.flatten()]).T
self.interp_weights = self.interp_weights[None, None, None]
# Bscan data stack:
self.Bscans_filtered_np = np.copy(Bscans)
self.Bscans_unfiltered_np = np.copy(Bscans)
# upsample A-scans:
if self.B_upsample != 1:
sampling = np.arange(Bscans.shape[2])
upsampling = np.arange(Bscans.shape[2] * self.B_upsample) * 1. / self.B_upsample
# throw out extrapolated positions:
upsampling = upsampling[:-self.B_upsample + 1]
B_interpolator = scipy.interpolate.interp1d(sampling, Bscans, kind='cubic', axis=2)
self.Bscans_filtered_np = B_interpolator(upsampling)
self.Bscans_unfiltered_np = np.copy(self.Bscans_filtered_np)
Bscan_dims[1] = self.Bscans_filtered_np.shape[2]
self.x_max = (np.int32(Bscan_dims[1] / self.downsample_x) - 1) * self.downsample_x
self.z_max = (np.int32(Bscan_dims[0] / self.downsample) - 1) * self.downsample
self.Bscans_filtered_np = self.Bscans_filtered_np[:, :self.z_max, :self.x_max]
self.Bscans_unfiltered_np = self.Bscans_unfiltered_np[:, :self.z_max, :self.x_max]
# for all lateral positions for all angles
self.valid_Ascans = np.arange(0, self.x_max + self.downsample_x,
self.downsample_x, dtype=np.int32)
self.valid_Ascans = np.tile(self.valid_Ascans, [len(self.ths), 1])
self.numx_downsamp = np.int32(Bscan_dims[1] / self.downsample_x)
self.numx = Bscan_dims[1]
self.numz = np.int32(Bscan_dims[0] / self.downsample)
# filter
self.Bscans_filtered_np = self.filter_Bscans(self.Bscans_filtered_np)
# flatten
# save this shape before flattening:
self.reduced_shape = self.Bscans_filtered_np.shape
self.Bscans_filtered_np = self.Bscans_filtered_np.flatten()
self.Bscans_unfiltered_np = self.Bscans_unfiltered_np.flatten()
# load B-scan weights
if self.use_Bweights or self.infer_backprojection_filter:
if len(self.Bweights.shape) == 3:
# because matlab doesn't allow trailing singleton dimensions
self.Bweights = self.Bweights[:, :, :, None]
if self.Bweights.shape[0] == 1:
self.Bweights = np.tile(self.Bweights, [len(self.ths), 1, 1, 1])
if self.B_upsample != 1:
Bweights_interpolator = scipy.interpolate.interp1d(sampling, self.Bweights, kind='nearest', axis=2)
self.Bweights = Bweights_interpolator(upsampling)
self.Bweights = self.Bweights[:, :self.z_max, :self.x_max]
self.Bweights = self.Bweights / self.Bweights.sum()
self.Bweights = self.Bweights.flatten()
else:
self.Bweights = None
if self.infer_backprojection_filter:
# Bweights are always needed for filter inference
self.Bweights_for_filter_inference = np.copy(self.Bweights)
if not self.use_Bweights:
self.Bweights = None
self.angle_membership = (np.ones(np.hstack([[1], self.reduced_shape[1:]]), dtype=np.float32) *
self.ths[:, None, None, None])
self.angle_membership = self.angle_membership.flatten()
# masks for index distribution
self.external_TV_mask = 1 - np.exp(-np.reshape(surround_dists_, [self.numgauss_s, self.numgauss_s]) / .0005)
self.internal_mask = 1 - np.exp(-np.reshape(inner_dists_, (self.numgauss_s, self.numgauss_s)) / .0005)
self.external_TV_mask = self.external_TV_mask.astype(np.float32)
self.internal_mask = self.internal_mask.astype(np.float32)
self.x_init = np.zeros((len(self.ths), self.numx, 2), dtype=np.float32)
if self.B_upsample != 1:
xzcoords_interpolator = scipy.interpolate.interp1d(sampling, xzcoords, kind='linear', axis=1)
xzcoords = xzcoords_interpolator(upsampling).astype(np.float32)
self.x_init[:, :, 0] = (xzcoords[:, :, 0] - .5) * L + .5 # lateralscale
# the first element from tf.scan will be the first + step:
self.z_init = xzcoords[:, :, 1] - self.step
# index kernel sampling window:
half = (self.numneigh_s - 1) // 2
self.Xr = np.arange(-half, half + 1)
self.Zr = np.arange(-half, half + 1)
self.Xr, self.Zr = np.meshgrid(self.Xr, self.Zr)
self.Xr = self.Xr.flatten()[None]
self.Zr = self.Zr.flatten()[None]
# index kernel coordinates:
self.Xc = np.linspace(0, 1, self.numgauss_s, dtype=np.float32)
self.Zc = np.linspace(0, 1, self.numgauss_s, dtype=np.float32)
self.Xc, self.Zc = np.meshgrid(self.Xc, self.Zc)
self.Xc = self.Xc.flatten()
self.Zc = self.Zc.flatten()
print('data loaded: ' + str(time() - start) + ' sec')
def build_graph(self, intra=0, inter=0):
# creates all variables and ops;
# intra sets the intra_op_parallelism_threads parameter in the tf.ConfigProto if using cpu rather than gpu
# inter sets the inter_op_parallelism_threads parameter
start = time()
if self.graph_built:
raise Exception('graph is already built')
if self.use_gpu:
self.sess = tf.InteractiveSession()
else:
config = tf.ConfigProto(device_count={'GPU': 0},
intra_op_parallelism_threads=intra,
inter_op_parallelism_threads=inter)
self.sess = tf.InteractiveSession(config=config)
self.create_tf_variables()
self.create_losses()
self.create_train_op()
self.saver = tf.train.Saver() # NOTE: saver only saves variables defined up until this line is run!
self.modify_loss_and_train_op_and_initialize()
self.graph_built = True
print('graph built: ' + str(time() - start) + ' sec')
def create_tf_variables(self):
# this function defines all variables, placeholders, and constants based on the current instance variable
# settings; be sure to set all desired hyperparameters beyond the constructor; i.e., run
# load_data_and_constants, and change any constants desired thereafter; no need to call this function directly,
# use the build_graph function
if self.batchsize is not None:
self.batchsize = tf.placeholder_with_default(self.batchsize, shape=None, name='batch_size')
else: # by default, batch is same size as total number of angles
self.batchsize = tf.placeholder_with_default(len(self.ths), shape=None, name='batch_size')
with tf.name_scope('index_parameters'):
if np.size(self.sig) == 1:
self.sig = tf.Variable(self.sig * np.ones(self.numgauss_s ** 2), dtype=np.float32, name='kernel_width')
elif np.size(self.sig) == self.numgauss_s ** 2:
self.sig = tf.Variable(self.sig.flatten(), dtype=np.float32, name='kernel_width')
else:
raise Exception('sig must be a number or array matching the size of the index map')
if np.size(self.A_nonparametric) == 1:
self.A_nonparametric = tf.Variable(self.A_nonparametric * np.ones(self.numgauss_s ** 2),
dtype=np.float32,
name='general_parameterization')
elif np.size(self.A_nonparametric) == self.numgauss_s ** 2:
self.A_nonparametric = tf.Variable(self.A_nonparametric.flatten(), dtype=np.float32,
name='general_parameterization')
else:
raise Exception('A_nonparametric must be a number or an array matching the size of the index map')
wall_thickness_mm = (self.tube_diameter - 736.5 * self.depth / self.Ascan_numpix) / 2
self.wall_thickness = wall_thickness_mm * self.n_back / self.depth
self.A_parametric = tf.Variable([self.inner_index, self.outer_index], name='geometric_parameterization')
self.A = tf.add(self.A_nonparametric, self.get_parametric_indexdist(self.A_parametric),
name='total_parameterization')
with tf.name_scope('coordinate_based_parameters'):
self.xz0 = tf.Variable(self.xz0, dtype=tf.float32, name='rotation_center')
self.xz_delta = tf.Variable(self.xz_delta_init, dtype=tf.float32, name='Bscan_spatial_offsets')
self.y_delta = tf.Variable(self.y_delta, dtype=tf.float32, name='Bscan_out_of_plane_offsets')
with tf.name_scope('PSF_parameters'):
self.sigx = tf.Variable(self.sigx, dtype=tf.float32, name='sigx')
self.sigz = tf.Variable(self.sigz, dtype=tf.float32, name='sigz')
self.h = tf.Variable(self.h, dtype=tf.float32, name='height_gaussian')
self.PSF_general = np.zeros((self.sz, self.sx), dtype=np.float32)
self.PSF_general[self.sz // 2, self.sx // 2] = 1. # start with delta func
self.PSF_general = tf.Variable(self.PSF_general, name='general')
with tf.name_scope('reconstruction_related_parameters'):
self.size_factor = tf.placeholder_with_default(self.size_factor_,
shape=(),
name='size_factor')
self.recon_res = tf.to_int32(
tf.stack([self.numgauss_s * self.size_factor,
self.numgauss_s * self.size_factor,
512], name='recon_res'))
self.recon_offset = tf.Variable(self.recon_offset, dtype=tf.float32, name='reconstruction_offset_bias')
self.attenfact = tf.Variable(self.attenfact, dtype=tf.float32, name='exponential_attenuation_factor')
self.attenexp = tf.Variable(self.attenexp, dtype=tf.float32, name='exponential_attenuation_exponent')
self.angle_mod = tf.Variable(np.ones(self.discret_levels, dtype=np.float32),
name='angle_reflectance_profile')
freqs = np.sqrt(np.abs(np.linspace(-1, 1, self.reduced_shape[1])))
fbp_filters_ = np.tile(freqs[:, None], (1, self.reduced_shape[2]))
self.fbp_filters = tf.Variable(fbp_filters_, dtype=tf.float32, name='fbp_filters')
# other constants (not optimized):
with tf.name_scope('initial_ray_positions'):
# according to valid_Ascans, select only valid A-scans
self.x_init = np.rollaxis(np.dstack([self.x_init[i, self.valid_Ascans[i]] for
i in range(self.batchsize.eval())]), 2, 0)
self.z_init = np.vstack([self.z_init[i, self.valid_Ascans[i]] for i in range(self.batchsize.eval())])
self.x_init = tf.placeholder_with_default(self.x_init, shape=None, name='x')
self.z_init = tf.placeholder_with_default(self.z_init, shape=None, name='z')
# rotation matrices
rotmats = list()
for theta in self.ths:
theta *= (np.pi / 180)
theta = theta.astype(np.float32)
rotmats.append(np.array([[np.cos(theta), -self.rotdir * np.sin(theta)],
[self.rotdir * np.sin(theta), np.cos(theta)]]))
rotmats = np.rollaxis(np.dstack(rotmats), 2, 0).astype(np.float32)
self.rotmats = tf.constant(rotmats, name='rotation_matrix')
self.Bscans_filtered = tf.placeholder(tf.float32, shape=self.Bscans_filtered_np.shape,
name='for_interpolation_filtered')
self.Bscans_unfiltered = tf.placeholder(tf.float32, shape=self.Bscans_unfiltered_np.shape,
name='for_interpolation_unfiltered')
self.TV_reg_coeff = tf.placeholder_with_default(self.TV_reg_coeff_, shape=(),
name='index_spatial_regularization')
# define these (initial) learning rates as tensors so that they can be annealed
self.lr_parametric = tf.placeholder_with_default(.001, shape=(), name='learning_rate_for_parametric_optim')
if self.use_parametric_optimization:
self.lr_nonparametric = tf.placeholder_with_default(.0, shape=(),
name='learning_rate_for_nonparametric_optim')
else:
self.lr_nonparametric = tf.placeholder_with_default(.001, shape=(),
name='learning_rate_for_nonparametric_optim')
# auxiliary tensors; for monitoring index distribution during training:
xx = np.linspace(0, 1, self.imsize, dtype=np.float32)
zz = np.linspace(0, 1, self.imsize, dtype=np.float32)
[xc2, zc2] = np.meshgrid(xx, zz)
xc2 = xc2.flatten()
zc2 = zc2.flatten()
xc2 = np.tile(xc2, (self.batchsize.eval(), 1))
zc2 = np.tile(zc2, (self.batchsize.eval(), 1))
RI = self.indexdist(xc2, zc2)[0][0] # the indexdist function was designed to be used by ray propagation code,
# so it contains extra stuff; here, we just want to see the index distribution
self.RI = tf.reshape(RI * self.n_back, [self.imsize] * 2, name='index_image')
def create_losses(self):
# generate a list of losses, the sum of which is to be minimized
# get the paths:
with tf.name_scope('ray_propagation'):
self.paths, self.dpathdz = self.integrate_scan_opl(
self.x_init,
self.z_init,
return_derivs=True)
self.paths = tf.identity(self.paths, name='trajectories')
z_paths = self.paths[:, :, :, 0] # for clarity
x_paths = self.paths[:, :, :, 1]
self.loss_terms = list() # for nonparametric
# data-dependent loss:
with tf.name_scope('backprojection'):
self.x_interp, self.z_interp = self.interp_rays_2d(x_paths, z_paths)
loss_data = self.backprojection_tf(self.x_interp, self.z_interp)
self.loss_terms.append(tf.multiply(10., loss_data, name='data_loss'))
# give stuff names for saving/restoring later:
with tf.name_scope('naming_OCRT_outputs'):
self.recon = tf.identity(self.recon, name='reconstruction')
self.error_map = tf.identity(self.error_map, name='error_map')
self.normalize = tf.identity(self.normalize, name='bp_normalizer')
self.forward = tf.identity(self.forward, name='forward_prediction')
# regularization - spatial shift:
with tf.name_scope('regularization'):
if self.use_spatial_shifts:
shift_reg = tf.reduce_sum((self.xz_delta - self.xz_delta_init) ** 2)
shift_reg = tf.multiply(shift_reg, self.shift_reg_coeff, name='square_shift_reg')
self.loss_terms.append(shift_reg)
# counteract changes in radius:
th_inds = np.arange(len(self.ths))
th_inds180 = np.roll(th_inds, len(self.ths) // 2)
xz_delta_x = self.xz_delta[:, 0]
xz_delta_z = self.xz_delta[:, 1]
diffx = xz_delta_x - tf.gather(xz_delta_x, th_inds180)
diffz = xz_delta_z - tf.gather(xz_delta_z, th_inds180)
tube_radius_change_reg = tf.reduce_sum(diffx ** 2 + diffz ** 2)
tube_radius_change_reg = tf.multiply(tube_radius_change_reg, self.tube_radius_change_reg_coeff,
name='tube_expansion_reg')
self.loss_terms.append(tube_radius_change_reg)
# regularization for nonparametric optimization:
support_reg = tf.multiply(4000., self.L2_mask(self.external_TV_mask.flatten()), name='support_reg')
TV_reg = tf.multiply(self.TV_reg_coeff, self.TVreg_mask(A=self.A_nonparametric, mask=self.internal_mask,
use_sqrt=True), name='TV_reg')
self.loss_terms.append(support_reg)
self.loss_terms.append(TV_reg)
# for convenience
self.loss_term_names = tf.constant([term.name for term in self.loss_terms], name='list_of_loss_terms')
def create_train_op(self):
# generate list of train_ops (which should be grouped)
loss = tf.reduce_sum(self.loss_terms)
with tf.name_scope('RI_train_op'):
train_op_nonparametric = tf.train.AdamOptimizer(learning_rate=self.lr_nonparametric).minimize(
loss, var_list=[self.A_nonparametric])
if self.use_parametric_optimization:
train_op_parametric = tf.train.AdamOptimizer(learning_rate=self.lr_parametric).minimize(
loss, var_list=[self.A_parametric])
if self.switch_to_nonparametric:
# in this case, have both present, and change the learning
# rates during training
train_op_ = tf.group(train_op_parametric, train_op_nonparametric)
else: # parametric optimization only
train_op_ = train_op_parametric
else: # nonparametric only
train_op_ = train_op_nonparametric
self.train_ops = list() # to be grouped together
self.train_ops.append(train_op_)
# train ops for other optimizable parameters other than index:
with tf.name_scope('non_RI_train_ops'):
if 'gaussian' in self.PSFconv_format:
lr_PSF = .01
train_op_PSF = tf.train.AdamOptimizer(learning_rate=lr_PSF).minimize(loss, var_list=[self.h])
self.train_ops.append(train_op_PSF)
if 'arbitrary' in self.PSFconv_format:
lr_PSF = .01
train_op_PSF2 = tf.train.AdamOptimizer(learning_rate=lr_PSF).minimize(loss, var_list=[self.PSF_general])
self.train_ops.append(train_op_PSF2)
if self.include_attenuation:
lr_atten = .001
train_op_atten1 = tf.train.AdamOptimizer(learning_rate=lr_atten).minimize(
loss, var_list=[self.attenfact])
train_op_atten2 = tf.train.AdamOptimizer(learning_rate=.05).minimize(loss, var_list=[self.attenexp])
self.train_ops.append(train_op_atten1)
self.train_ops.append(train_op_atten2)
if self.use_reflectance_model:
train_op_refl = tf.train.AdamOptimizer(learning_rate=.01).minimize(loss, var_list=[self.angle_mod])
self.train_ops.append(train_op_refl)
train_op_reconoffset = tf.train.AdamOptimizer(learning_rate=.001).minimize(
loss, var_list=[self.recon_offset])
self.train_ops.append(train_op_reconoffset)
if self.use_spatial_shifts:
train_op_spatial_shifts = tf.train.AdamOptimizer(learning_rate=.0005).minimize(
loss, var_list=[self.xz_delta])
self.train_ops.append(train_op_spatial_shifts)
# have a separate instance variable for the grouped train_op:
# sometimes may want to modify the list of train_ops and then regroup
self.train_op = tf.group(*self.train_ops)
def modify_loss_and_train_op_and_initialize(self):
# according to binary settings, modify the loss and/or train_op to do filter optimization; then, initialize all
# variables
if self.infer_backprojection_filter: # after registration, load ckpt and optimize the backprojection filter
assert not self.use_spatial_shifts
# overwrite this:
x_interp, z_interp = self.interp_rays_2d(self.paths[:, :, :, 1], self.paths[:, :, :, 0])
self.stop_gradient_projection = False # or else gradient can't flow
loss_data = self.backprojection_tf(x_interp, z_interp)
# replace:
self.loss_terms = [tf.multiply(10., loss_data, name='data_loss')]
self.recon = tf.identity(self.recon, name='reconstruction')
self.error_map = tf.identity(self.error_map, name='error_map')
self.normalize = tf.identity(self.normalize, name='bp_normalizer')
self.forward = tf.identity(self.forward, name='forward_prediction')
# for now, slice the appropriate dim, because we are not doing 3D:
# (also, tf's total variation implemention is anisotropic)
TV_recon = self.TVreg_mask(self.recon[:, :, 5], use_sqrt=True, numgauss_s=self.recon_res[0])
TV_recon = tf.multiply(1e-7, TV_recon, name='TV_for_filter_opt')
self.loss_terms.append(TV_recon)
self.loss_term_names = tf.constant([term.name for term in self.loss_terms], name='list_of_loss_terms')
self.train_op = tf.train.AdamOptimizer(learning_rate=.001).minimize(tf.reduce_sum(self.loss_terms),
var_list=[self.fbp_filters])
self.train_ops = [self.train_op]
self.sess.run(tf.global_variables_initializer())
self.saver.restore(self.sess, self.save_directory + '/model.ckpt')
self.second_round_of_optimization = True
else: # optimize from scratch (without loading from a checkpoint)
self.sess.run(tf.global_variables_initializer())
self.second_round_of_optimization = False
def save_graph(self):
# save model and model parameters
if not os.path.exists(self.save_directory):
os.makedirs(self.save_directory)
print('Created new directory: ' + self.save_directory)
if self.second_round_of_optimization:
# after filter optimization
self.saver.save(self.sess, self.save_directory + '/model_round2.ckpt')
else:
# after registration
self.saver.save(self.sess, self.save_directory + '/model.ckpt')
def get_parametric_indexdist(self, params, transition_thickness=.003):
# parametric index distribution for a circular tube with logistic transitions (the transition thickness is given
# by the second argument); the output of this function is added to A
x0 = self.xz0[0] - self.xz_delta_init[0, 0]
z0 = self.xz0[1] - self.xz_delta_init[0, 1]
r_inner = self.outer_radius - self.wall_thickness
r_outer = self.outer_radius
h_inner = params[0]
h_outer = params[1]
# radial distance from the center:
rc = tf.sqrt((self.Xc - x0) ** 2 + (self.Zc - z0) ** 2)
ring_inner = h_inner / (1 + tf.exp(
tf.clip_by_value((rc - r_inner) / transition_thickness, -15, 15)))
ring_outer = h_outer / (1 + tf.exp(
tf.clip_by_value((rc - r_outer) / transition_thickness, -15, 15)))
return ring_inner + ring_outer
def indexdist(self, x_, z_):
# returns 2D kernel-parameterized index and spatial derivatives at the given input coordinates;
# based on nadaraya-watson estimator
# define coordinates and rotate them:
xz = tf.stack([x_, z_], 2)
xz -= self.xz0 # subtract out center
xzp = tf.matmul(xz, tf.transpose(self.rotmats, [0, 2, 1]))
# small spatial tweaks; expand dims so that it's batchsizex1x2:
xzp -= tf.expand_dims(self.xz_delta, 1)
xzp += self.xz0 # add center back after rotating
X = xzp[:, :, 0:1]
Z = xzp[:, :, 1:2]
Xround = tf.to_int32(tf.round(X * self.numgauss_s))
Zround = tf.to_int32(tf.round(Z * self.numgauss_s))
# these should be _xnumgauss_s:
Xneigh = tf.mod(Xround + self.Xr, self.numgauss_s)
Zneigh = tf.mod(Zround + self.Zr, self.numgauss_s)
lininds = self.numgauss_s * Zneigh + Xneigh # convert to linear indices
Xg = tf.gather(self.Xc, lininds)
Zg = tf.gather(self.Zc, lininds)
# index A and sigma too
A_ = tf.gather(self.A, lininds)
sig_ = tf.gather(self.sig, lininds)
# add something close to machine eps for float32 to avoid divide by 0:
# intermediate, will be used several times:
n_intermed = tf.exp(-((Xg - X) ** 2 + (Zg - Z) ** 2) * .5 / (sig_ ** 2)) + 2e-7
# normalize the sum (cf, nadaraya-watson):
norm = tf.reduce_sum(n_intermed, 2)
n_unnorm = n_intermed * A_ # unnormalized, used to calculate gradients
nx = n_unnorm * (Xg - X) / sig_ ** 2
nz = n_unnorm * (Zg - Z) / sig_ ** 2
nx = tf.reduce_sum(nx, 2)
nz = tf.reduce_sum(nz, 2)
norm_deriv_x = n_intermed * (Xg - X) / sig_ ** 2
norm_deriv_z = n_intermed * (Zg - Z) / sig_ ** 2
norm_deriv_x = tf.reduce_sum(norm_deriv_x, 2)
norm_deriv_z = tf.reduce_sum(norm_deriv_z, 2)
# now done with this, so collapse:
n_unnorm = tf.reduce_sum(n_unnorm, 2)
# now, compute the index distribution:
n = n_unnorm / norm
# ...and the spatial gradients (quotient rule)
nx = (norm * nx - n_unnorm * norm_deriv_x) / norm ** 2
nz = (norm * nz - n_unnorm * norm_deriv_z) / norm ** 2
grad_ = tf.stack([nx, nz], 2)
grad = tf.matmul(grad_, self.rotmats)
return 1. + n, grad[:, :, 0], grad[:, :, 1]
def rayeq_opl(self, z, x):
# specifies the ray equation differential equation to be used in rk4;
# returns the refractive index as well to divide by to encode opl
(n, dndx, dndz) = self.indexdist(x[:, :, 0], z)
dXdz1 = x[:, :, 1]
dXdz2 = 1. / n * (dndx * (1 + dXdz1 ** 2) - dndz * dXdz1)
return tf.stack([dXdz1, dXdz2], 2), n
def rk4_step_opl(self, xz0, dummy):
# adapted from: https://github.com/andyr0id/theano-rk4/blob/master/rk4.py;
# this implementation of rk4 has a variable step size depending on opl;
# xz0: not the center of rotation, but the current position;
# dummy: tf.scan requires passing elems as the second argument, but we actually don't need it;
z0 = xz0[:, :, 0]
x0 = xz0[:, :, 1:3]
# get the index at current step,to define the step size
(deriv, n) = self.rayeq_opl(z0, x0)
h = self.step / tf.expand_dims(n, -1)
half_h = h * .5
k1 = h * deriv
# when adding, squeeze to avoid perpendicular addition (broadcasting):
z2 = z0 + tf.squeeze(half_h)
x2 = x0 + (k1 / 2)
# ... but need expanded for broadcasting multiplication:
k2 = h * self.rayeq_opl(z2, x2)[0]
x3 = x0 + (k2 / 2)
k3 = h * self.rayeq_opl(z2, x3)[0]
z4 = z0 + tf.squeeze(h) # see above regarding squeezing
x4 = x0 + k3
k4 = h * self.rayeq_opl(z4, x4)[0]
xi = x0 + (k1 + 2. * k2 + 2 * k3 + k4) / 6.
xzi = tf.concat([tf.expand_dims(z4, -1), xi], 2)
return xzi
def integrate_scan_opl(self, x_init0, z_init0, return_derivs=False):
# this is the function that actually propagates the rays given initial conditions (first two arguments);
# return_derivs: whether this function returns derivatives of the paths;
# pack into one tensor:
xz_init0 = tf.concat([tf.expand_dims(z_init0, -1), x_init0], 2)
# just needs to be a tensor whose leading dimension is of size numz:
dummy = tf.ones([self.numz])
paths = tf.scan(self.rk4_step_opl, dummy, xz_init0, swap_memory=True)
if return_derivs: # return everything (paths and derivatives)
everything = tf.transpose(paths, [1, 0, 2, 3])
return everything[:, :, :, 0:2], everything[:, :, :, 2]
else:
# throw out the third one, which is the dx/dz:
return tf.transpose(paths[:, :, :, 0:2], [1, 0, 2, 3])
def interp_rays_2d(self, x_paths, z_paths):
# the rays were sparsely propagated to generate x_paths and z_paths; this function returns
# upsampled/interpolated paths;
# xz_paths: the output of the ray propagation; it is of dimension:
# numangles by (reduced z) by (subset of x) by y;
# interp weights has dimensions:
# 1 by 1 by 1 by downsample*downsample_x by 4;
# summing across the last dim gives all 1s
x_paths = tf.expand_dims(x_paths, -1) # numang by z by x by 1
z_paths = tf.expand_dims(z_paths, -1)
# these 8 variables have dims of ...
# numang by z-1 by x-1 by (downsample*downsample_z):
x_UL = x_paths[:, :-1, :-1] * self.interp_weights[..., 0]
x_UR = x_paths[:, :-1, 1:] * self.interp_weights[..., 1]
x_DL = x_paths[:, 1:, :-1] * self.interp_weights[..., 2]
x_DR = x_paths[:, 1:, 1:] * self.interp_weights[..., 3]
z_UL = z_paths[:, :-1, :-1] * self.interp_weights[..., 0]
z_UR = z_paths[:, :-1, 1:] * self.interp_weights[..., 1]
z_DL = z_paths[:, 1:, :-1] * self.interp_weights[..., 2]
z_DR = z_paths[:, 1:, 1:] * self.interp_weights[..., 3]
x_interp = x_UL + x_UR + x_DL + x_DR
z_interp = z_UL + z_UR + z_DL + z_DR
# reshape strange shape back to normal:
x_interp = tf.reshape(x_interp,
(len(self.ths),
self.numz - 1,
self.numx_downsamp - 1,
self.downsample_x,
self.downsample))
x_interp = tf.transpose(x_interp, (0, 1, 4, 2, 3))
x_interp = tf.reshape(x_interp,
(len(self.ths), self.z_max, self.x_max))
z_interp = tf.reshape(z_interp,
(len(self.ths),
self.numz - 1,
self.numx_downsamp - 1,
self.downsample_x,
self.downsample))
z_interp = tf.transpose(z_interp, (0, 1, 4, 2, 3))
z_interp = tf.reshape(z_interp,
(len(self.ths), self.z_max, self.x_max))
return x_interp, z_interp
def backprojection_tf(self, xpaths, zpaths):
# this function backprojects the B-scan data along the input paths (the two arguments), which can be the
# outputs of interp_rays_2d, to form the reconstruction, which is then gathered along the same ray paths, from
# which the forward model is applied;
#
# Bscans_filtered: used for backprojection;
#
# Bscans_unfiltered: used for computing MSE;
#
# Bweights: weight vector, to scale the B-scans for backprojection and/or for gathering the values from the
# reconstruction; in this implementation, it simply masks out the central reflection artifact;
#
# recon_res: a tuple that specifies the resolution of the reconstruction [x,z,y];
#
# angle_membership: specifies whether to factor in the angle at which the illumination is incident on the
# sample; NOTE: this does not consider the angle of the rays themselves, but rather the angle of the overall
# Bscan; also, the gradient direction map that is generated is not interpolated like recon is; if
# angle_membership is not None, then it's the actual angle in degrees
#
# num_y_pixels: specifies the number of pixels in the y dimension of the reconstruction; the xz dims retain that
# corresponding to recon_res;
#
# use_interp_projection: indicates whether to place the Bscan points onto the 4 surrounding points, distributed
# according to distance to those points; otherwise, round to the nearest pixel;
numang = len(self.ths)
if not self.infer_backprojection_filter:
Bscans_for_bp = self.Bscans_filtered
else: # then you actually need to symbolically filter the unfiltered
Bscans_filtered_filtopt = self.filter_Bscans_tf(self.Bscans_unfiltered)
Bscans_filtered_filtopt = tf.reshape(Bscans_filtered_filtopt, [-1])
Bscans_for_bp = Bscans_filtered_filtopt
# when doing backprojection, can use the Bweights to avoid central reflection:
if self.use_Bweights_for_bp:
Bscans_for_bp *= np.float32(self.Bweights > 0)
if self.num_y_pixels % 2:
raise Exception('y dim must be even')
xzpaths = tf.stack([xpaths, zpaths], 3)
xzpaths = tf.reshape(xzpaths, [numang, -1, 2])
xzpaths -= self.xz0
ypaths = tf.zeros((numang, self.z_max * self.x_max, 1)) # placeholder code for now; currently there is no 3D
# rotate by Bscan:
# rotmats is 60(i) by 2(k) by 2(l)
# xzpaths is 60(i) by _(j) by 2(l) - a list of xz coordinates per angle
# so basically, einsum does batch matmul, since tf.matmul doesn't broadcast:
xz = tf.einsum('ikl,ijl->ijk', self.rotmats, xzpaths)
# merge xz and y:
xzy = tf.concat([xz, ypaths], axis=2) # 60 by _ by 3
# decenter and add spatial shifts:
xzy += tf.concat([self.xz0, [0.]], axis=0) # decenter
# 60 by 3 (no need to tile here; broadcasting works!):
xzy_delta = tf.concat([-self.xz_delta,
tf.expand_dims(self.y_delta, -1)], axis=1)
xzy_delta = tf.expand_dims(xzy_delta, 1) # 60 by 1 by 3
xzy += xzy_delta
# discretize and remove out of bound coordinates:
xzy = tf.reshape(xzy, (-1, 3)) # now just a list of coordinates
xzy_float = xzy * tf.to_float(self.recon_res) # rescale from [0,1]
xz_float = xzy_float[:, 0:2]
y_float = xzy_float[:, 2:3]
y_float += tf.to_float(self.num_y_pixels) / 2 # decenter from 0
# clip values that are out of bounds:
# assume recon_res[0]==recon_res[1]:
xz_float = tf.clip_by_value(xz_float, 2, tf.to_float(self.recon_res[0] - 3))
y_float = tf.clip_by_value(y_float, 1., tf.to_float(self.num_y_pixels - 2))
xzy_float = tf.concat([xz_float, y_float], axis=1) # recombine
xzy = tf.to_int32(tf.round(xzy_float))
# trilinear interp (for backprojection/scattering and gathering):
x = xzy_float[:, 0]
z = xzy_float[:, 1]
y = xzy_float[:, 2]
x_floor = tf.floor(x)
x_ceil = tf.floor(x + 1)
z_floor = tf.floor(z)
z_ceil = tf.floor(z + 1)
y_floor = tf.floor(y)
y_ceil = tf.floor(y + 1)
fx = x - x_floor
cx = x_ceil - x
fz = z - z_floor
cz = z_ceil - z
# fy = y-y_floor
# cy = y_ceil-y
# cast into integers:
x_floor = tf.to_int32(x_floor)
x_ceil = tf.to_int32(x_ceil)
z_floor = tf.to_int32(z_floor)
z_ceil = tf.to_int32(z_ceil)
y_floor = tf.to_int32(y_floor)
y_ceil = tf.to_int32(y_ceil)
# y is ignored from here for simplicity (since only 2D is implemented for now)
# generate the coordinates of the projection cells:
xzyfff = tf.stack([x_floor, z_floor, y_floor], 1)
xzyfcf = tf.stack([x_floor, z_ceil, y_floor], 1)
xzycff = tf.stack([x_ceil, z_floor, y_floor], 1)
xzyccf = tf.stack([x_ceil, z_ceil, y_floor], 1)
# reconstruct:
recon_size = tf.concat([self.recon_res[0:2], [self.num_y_pixels]], 0)
if self.use_interp_projection:
# compute the interpolated normalize tensor here; _8 is used to indicate 3D, as trilinear interpolation uses
# 8 cubes, but here for simplicity of 2D, we use 4 squares;
xzy_8 = tf.concat([xzyfff, xzyfcf, xzycff, xzyccf], 0)
# compute the interpolated backprojection
# gaussian-weighted factors:
sig_proj = .42465 # chosen so that if the point is exactly halfway between two pixels, .5 weight is
# assigned to each pixel
fx = tf.exp(-fx ** 2 / 2. / sig_proj ** 2)
fz = tf.exp(-fz ** 2 / 2. / sig_proj ** 2)
cx = tf.exp(-cx ** 2 / 2. / sig_proj ** 2)
cz = tf.exp(-cz ** 2 / 2. / sig_proj ** 2)
Bscans_8 = tf.concat([
Bscans_for_bp * fx * fz,
Bscans_for_bp * fx * cz,
Bscans_for_bp * cx * fz,
Bscans_for_bp * cx * cz,
], 0)
if self.normalize_across_whole_dataset:
# this produces streak artifacts when there are focusing rays
normalize = tf.scatter_nd(xzy_8, tf.ones_like(Bscans_8),
recon_size) + 1e-7
recon = tf.scatter_nd(xzy_8, Bscans_8, recon_size)
else:
# this block below normalizes within each B-scan first (to account for ray focusing), and then
# normalizes across entire dataset; this is computationally intensive;
# encode xzya_8 into integer:
angle_membership_augmented = tf.tile(tf.to_int32(self.angle_membership / self.angle_step), [4])
xzya_8 = tf.concat([xzy_8, angle_membership_augmented[:, None]], 1)
encoder = tf.to_int64(tf.stack([1, recon_size[0], recon_size[0] * recon_size[1],
recon_size[0] * recon_size[1] * recon_size[2]], 0))
# encode to unique int64 integer:
xzya_1d = tf.reduce_sum(tf.to_int64(xzya_8) * encoder[None], 1)
# isolate unique coordinates per angle:
xzya_1d_sorted, xzya_1d_sorted_ids = tf.nn.top_k(xzya_1d, k=tf.shape(xzya_1d)[0])
xzya_1d_unique, segments = tf.unique(xzya_1d_sorted)
# average segments in Bscans, per angle:
Bscans_8_sorted = tf.gather(Bscans_8, xzya_1d_sorted_ids)
Bscans_8_normalized = tf.segment_mean(Bscans_8_sorted, segments)
# decode xzy:
a_decode = xzya_1d_unique // encoder[3]
# subtract out the largest place digit first:
y_decode = (xzya_1d_unique - a_decode * encoder[3]) // encoder[2]
z_decode = (xzya_1d_unique - a_decode * encoder[3] - y_decode * encoder[2]) // encoder[1]
x_decode = (xzya_1d_unique - a_decode * encoder[3] - y_decode * encoder[2] - z_decode * encoder[1])
# xzya_8_unique = tf.stack([x_decode,z_decode,y_decode,a_decode], 1)
xzy_8_unique = tf.to_int32(tf.stack([x_decode, z_decode, y_decode], 1))
recon = tf.scatter_nd(xzy_8_unique, Bscans_8_normalized, recon_size)
normalize = tf.scatter_nd(xzy_8_unique, tf.ones_like(x_decode, dtype=tf.float32), recon_size) + 1e-7
# this factor roughly to match a similar range to that of the normalize_across_whole_dataset:
recon *= 4.5
else: # project by rounding to nearest pixel:
recon = tf.scatter_nd(xzy, Bscans_for_bp, recon_size)
normalize = tf.scatter_nd(xzy, tf.ones_like(Bscans_for_bp), recon_size) + 1e-7
if not self.turn_off_all_normalization:
recon = recon / normalize * len(self.ths)
if self.stop_gradient_projection:
recon = tf.stop_gradient(recon) # this might save some computation and avoid some artifacts
recon += self.recon_offset
# gathering stage for computing the loss
ff = tf.gather_nd(recon, xzyfff)
fc = tf.gather_nd(recon, xzyfcf)
cf = tf.gather_nd(recon, xzycff)
cc = tf.gather_nd(recon, xzyccf)
recon_interp_gathered = (cc * cx * cz + cf * cx * fz + fc * fx * cz + ff * fx * fz)
# now, compute the loss:
if self.angle_membership is not None:
imdir, angles = self.image_gradient(recon) # compute direction map
imdir = tf.to_float(imdir)
# gathering by nearest pixel, not linear interp like above:
imdir_xzy = tf.gather_nd(imdir, xzy)
# relative to each Bscan's angle:
surface_normal = tf.mod(tf.to_int32(
tf.round(imdir_xzy - self.angle_membership / 360 * 2 * self.discret_levels)), self.discret_levels)
# if using arbitrary model, pass the int32 indices:
rm = self.reflectance_model(surface_normal, model='arbitrary')
recon_interp_gathered_angmod = recon_interp_gathered * rm
if self.use_blur_Bscan_in_forward_pred:
(recon_interp_gathered_conv,
recon_interp_gathered_noconv) = self.convolve_PSF_recon_gathered(recon_interp_gathered)
# run the function again to get the angmod version:
recon_interp_gathered_angmod_conv, _ = self.convolve_PSF_recon_gathered(recon_interp_gathered_angmod)
else:
# ie, don't use self.convolve_PSF_recon_gathered
# self.h acts as an intensity scaler
recon_interp_gathered_conv = self.h * tf.reshape(recon_interp_gathered, self.reduced_shape)
recon_interp_gathered_noconv = tf.reshape(recon_interp_gathered, self.reduced_shape)
recon_interp_gathered_angmod_conv = self.h * tf.reshape(recon_interp_gathered_angmod, self.reduced_shape)