forked from ranjaykrishna/densevid_eval
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
270 lines (239 loc) · 11.4 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
# --------------------------------------------------------
# Dense-Captioning Events in Videos Eval
# Copyright (c) 2017 Ranjay Krishna
# Licensed under The MIT License [see LICENSE for details]
# Written by Ranjay Krishna
# --------------------------------------------------------
import argparse
import json
import sys
sys.path.insert(0, './coco-caption') # Hack to allow the import of pycocoeval
from pycocoevalcap.tokenizer.ptbtokenizer import PTBTokenizer
from pycocoevalcap.bleu.bleu import Bleu
from pycocoevalcap.meteor.meteor import Meteor
from pycocoevalcap.rouge.rouge import Rouge
from pycocoevalcap.cider.cider import Cider
from sets import Set
import numpy as np
def remove_nonascii(text):
return ''.join([i if ord(i) < 128 else ' ' for i in text])
class ANETcaptions(object):
PREDICTION_FIELDS = ['results', 'version', 'external_data']
def __init__(self, ground_truth_filenames=None, prediction_filename=None,
tious=None, max_proposals=1000,
prediction_fields=PREDICTION_FIELDS, verbose=False):
# Check that the gt and submission files exist and load them
if len(tious) == 0:
raise IOError('Please input a valid tIoU.')
if not ground_truth_filenames:
raise IOError('Please input a valid ground truth file.')
if not prediction_filename:
raise IOError('Please input a valid prediction file.')
self.verbose = verbose
self.tious = tious
self.max_proposals = max_proposals
self.pred_fields = prediction_fields
self.ground_truths = self.import_ground_truths(ground_truth_filenames)
self.prediction = self.import_prediction(prediction_filename)
self.tokenizer = PTBTokenizer()
# Set up scorers, if not verbose, we only use the one we're
# testing on: METEOR
if self.verbose:
self.scorers = [
(Bleu(4), ["Bleu_1", "Bleu_2", "Bleu_3", "Bleu_4"]),
(Meteor(),"METEOR"),
(Rouge(), "ROUGE_L"),
(Cider(), "CIDEr")
]
else:
self.scorers = [(Meteor(), "METEOR")]
def import_prediction(self, prediction_filename):
if self.verbose:
print "| Loading submission..."
submission = json.load(open(prediction_filename))
if not all([field in submission.keys() for field in self.pred_fields]):
raise IOError('Please input a valid ground truth file.')
# Ensure that every video is limited to the correct maximum number of proposals.
results = {}
for vid_id in submission['results']:
results[vid_id] = submission['results'][vid_id][:self.max_proposals]
return results
def import_ground_truths(self, filenames):
gts = []
self.n_ref_vids = Set()
for filename in filenames:
gt = json.load(open(filename))
self.n_ref_vids.update(gt.keys())
gts.append(gt)
if self.verbose:
print "| Loading GT. #files: %d, #videos: %d" % (len(filenames), len(self.n_ref_vids))
return gts
def iou(self, interval_1, interval_2):
start_i, end_i = interval_1[0], interval_1[1]
start, end = interval_2[0], interval_2[1]
intersection = max(0, min(end, end_i) - max(start, start_i))
union = min(max(end, end_i) - min(start, start_i), end-start + end_i-start_i)
iou = float(intersection) / (union + 1e-8)
return iou
def check_gt_exists(self, vid_id):
for gt in self.ground_truths:
if vid_id in gt:
return True
return False
def get_gt_vid_ids(self):
vid_ids = set([])
for gt in self.ground_truths:
vid_ids |= set(gt.keys())
return list(vid_ids)
def evaluate(self):
aggregator = {}
self.scores = {}
for tiou in self.tious:
scores = self.evaluate_tiou(tiou)
for metric, score in scores.items():
if metric not in self.scores:
self.scores[metric] = []
self.scores[metric].append(score)
if self.verbose:
self.scores['Recall'] = []
self.scores['Precision'] = []
for tiou in self.tious:
precision, recall = self.evaluate_detection(tiou)
self.scores['Recall'].append(recall)
self.scores['Precision'].append(precision)
def evaluate_detection(self, tiou):
gt_vid_ids = self.get_gt_vid_ids()
# Recall is the percentage of ground truth that is covered by the predictions
# Precision is the percentage of predictions that are valid
recall = [0] * len(gt_vid_ids)
precision = [0] * len(gt_vid_ids)
for vid_i, vid_id in enumerate(gt_vid_ids):
best_recall = 0
best_precision = 0
for gt in self.ground_truths:
if vid_id not in gt:
continue
refs = gt[vid_id]
ref_set_covered = set([])
pred_set_covered = set([])
num_gt = 0
num_pred = 0
if vid_id in self.prediction:
for pred_i, pred in enumerate(self.prediction[vid_id]):
pred_timestamp = pred['timestamp']
for ref_i, ref_timestamp in enumerate(refs['timestamps']):
if self.iou(pred_timestamp, ref_timestamp) > tiou:
ref_set_covered.add(ref_i)
pred_set_covered.add(pred_i)
new_precision = float(len(pred_set_covered)) / pred_i
best_precision = max(best_precision, new_precision)
new_recall = float(len(ref_set_covered)) / len(refs['timestamps'])
best_recall = max(best_recall, new_recall)
recall[vid_i] = best_recall
precision[vid_i] = best_precision
return sum(recall) / len(recall), sum(precision) / len(precision)
def evaluate_tiou(self, tiou):
# This method averages the tIoU precision from METEOR, Bleu, etc. across videos
res = {}
gts = {}
gt_vid_ids = self.get_gt_vid_ids()
for vid_id in gt_vid_ids:
res[vid_id] = {}
gts[vid_id] = {}
# If the video does not have a prediction, then Vwe give it no matches
# We set it to empty, and use this as a sanity check later on
if vid_id not in self.prediction:
gts[vid_id] = {}
res[vid_id] = {}
# If we do have a prediction, then we find the scores based on all the
# valid tIoU overlaps
else:
unique_index = 0
cur_res = res[vid_id]
cur_gts = gts[vid_id]
# For each prediction, we look at the tIoU with ground truth
for pred in self.prediction[vid_id]:
has_added = False
for gt in self.ground_truths:
if vid_id not in gt:
continue
gt_captions = gt[vid_id]
for caption_idx, caption_timestamp in enumerate(gt_captions['timestamps']):
if self.iou(pred['timestamp'], caption_timestamp) >= tiou:
cur_res[unique_index] = [{'caption': remove_nonascii(pred['sentence'])}]
cur_gts[unique_index] = [{'caption': remove_nonascii(gt_captions['sentences'][caption_idx])}]
unique_index += 1
has_added = True
# If the predicted caption does not overlap with any ground truth,
# we should compare it with garbage
if not has_added:
cur_res[unique_index] = [{'caption': remove_nonascii(pred['sentence'])}]
cur_gts[unique_index] = [{'caption': 'abc123!@#'}]
# Each scorer will compute across all videos and take average score
output = {}
for scorer, method in self.scorers:
if self.verbose:
print 'computing %s score...'%(scorer.method())
# For each video, take all the valid pairs (based from tIoU) and compute the score
all_scores = {}
for vid_id in gt_vid_ids:
if len(res[vid_id]) == 0 or len(gts[vid_id]) == 0:
if type(method) == list:
score = [0] * len(method)
else:
score = 0
else:
cur_res = self.tokenizer.tokenize(res[vid_id])
cur_gts = self.tokenizer.tokenize(gts[vid_id])
score, scores = scorer.compute_score(cur_gts, cur_res)
all_scores[vid_id] = score
print all_scores.values()
if type(method) == list:
scores = np.mean(all_scores.values(), axis=0)
for m in xrange(len(method)):
output[method[m]] = scores[m]
if self.verbose:
print "Calculated tIoU: %1.1f, %s: %0.3f" % (tiou, method[m], output[method[m]])
else:
output[method] = np.mean(all_scores.values())
if self.verbose:
print "Calculated tIoU: %1.1f, %s: %0.3f" % (tiou, method, output[method])
return output
def main(args):
# Call coco eval
evaluator = ANETcaptions(ground_truth_filenames=args.references,
prediction_filename=args.submission,
tious=args.tious,
max_proposals=args.max_proposals_per_video,
verbose=args.verbose)
evaluator.evaluate()
# Output the results
if args.verbose:
for i, tiou in enumerate(args.tious):
print '-' * 80
print "tIoU: " , tiou
print '-' * 80
for metric in evaluator.scores:
score = evaluator.scores[metric][i]
print '| %s: %2.4f'%(metric, 100*score)
# Print the averages
print '-' * 80
print "Average across all tIoUs"
print '-' * 80
for metric in evaluator.scores:
score = evaluator.scores[metric]
print '| %s: %2.4f'%(metric, 100 * sum(score) / float(len(score)))
if __name__=='__main__':
parser = argparse.ArgumentParser(description='Evaluate the results stored in a submissions file.')
parser.add_argument('-s', '--submission', type=str, default='sample_submission.json',
help='sample submission file for ActivityNet Captions Challenge.')
parser.add_argument('-r', '--references', type=str, nargs='+', default=['data/val_1.json', 'data/val_2.json'],
help='reference files with ground truth captions to compare results against. delimited (,) str')
parser.add_argument('--tious', type=float, nargs='+', default=[0.3, 0.5, 0.7, 0.9],
help='Choose the tIoUs to average over.')
parser.add_argument('-ppv', '--max-proposals-per-video', type=int, default=1000,
help='maximum propoasls per video.')
parser.add_argument('-v', '--verbose', action='store_true',
help='Print intermediate steps.')
args = parser.parse_args()
main(args)