-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSnakefile
366 lines (302 loc) · 12.4 KB
/
Snakefile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
# The main entry point of your workflow.
# After configuring, running snakemake -n in a clone of this repository should successfully execute a dry-run of the workflow.
import re
import gzip
import glob
import csv
import pandas as pd
from snakemake.utils import validate, min_version
from Bio import SeqIO
from Bio.SeqRecord import SeqRecord
from Bio.Seq import Seq
##### load config and sample sheets #####
configfile: "config.yaml"
# report: "report/workflow.rst"
validate(config, schema="schemas/config.schema.yaml")
if config['samplesheet'] != "":
samples = pd.read_csv(config['samplesheet']).set_index("Name", drop=False)
validate(samples, schema="schemas/samples.schema.yaml")
FEATURE_BC_IDS = dict(zip(samples["Name"], samples["Feature_BC_ID"]))
SAMPLE_BC_IDS = dict(zip(samples["Name"], samples["Sample_BC_ID"])) if "Sample_BC_ID" in samples.columns else {}
else:
samples = None
FEATURE_BC_IDS = {}
# LIBRARY_FASTA = bowtie
# LIBRARY_BASENAME = "bowtie/" + os.path.splitext(os.path.basename(LIBRARY_FASTA))[0]
# LIBRARY_INDEX_DONEFILE = LIBRARY_BASENAME + ".done"
THREADS = config['threads']
FASTQ_DIR = config['fastq_dir']
SAMPLE_BC_FASTQ_DIR = config['sample_bc_fastq_dir'] if 'sample_bc_fastq_dir' in config.keys() else FASTQ_DIR
# Allow users to fix the underlying OS via singularity.
singularity: "docker://continuumio/miniconda3"
# include: "rules/other.smk"
wildcard_constraints:
directory=".+\/",
sample="[^\/]+"
localrules: all, combine_feature_counts, merge_fastqs, merge_fastqs_sample_bc, sample_bc_flatfile, make_library_fasta
rule all:
input:
"outs/feature_counts.txt",
"outs/read_stats.csv",
"outs/featurebarcode-qc-report.html"
run:
print("workflow complete!")
def get_report_deps(wildcards):
inputs = {'counts' : "outs/feature_counts.txt",
'stats' : 'outs/read_stats.csv'}
# if SAMPLE_BC_IDS:
# inputs['sample_bc_counts'] = "outs/sample_bc_counts.txt"
return inputs
rule create_report:
input: unpack(get_report_deps)
output:
"outs/featurebarcode-qc-report.html"
script:
"report/featurebarcode-qc-report.Rmd"
rule get_read_stats:
input:
trim = expand("outs/trim/{sample}_R1.fastq.gz", sample=FEATURE_BC_IDS.keys()),
alns = expand("outs/alns/{sample}.bam", sample=FEATURE_BC_IDS.keys()),
counts = expand("outs/feature_counts/{sample}.txt", sample=FEATURE_BC_IDS.keys()),
# pdna_trim = "outs/pdna/trim/pDNA.fastq.gz",
# pdna_alns = "outs/pdna/alns/pDNA.bam",
pdna_counts = "outs/pdna/feature_counts/pDNA.txt"
output:
"outs/read_stats.csv"
params:
samplesheet = lambda wildcards: "--samplesheet " + config['samplesheet'] if samples is not None else "",
pdna_fastq = lambda wildcards: "--pdna-fastq " + config['pdna_fastq'] if config['pdna_fastq'] is not "" else "",
fastq_dir = lambda wildcards: "--fastq-dir " + config['fastq_dir'] if config['fastq_dir'] is not "" else ""
shell:
"python scripts/read_stats.py {output} {params.samplesheet} "
"{params.pdna_fastq} {params.fastq_dir}"
rule combine_feature_counts:
input:
expand("outs/feature_counts/{sample}.txt",sample=FEATURE_BC_IDS),
"outs/pdna/feature_counts/pDNA.txt"
output: "outs/feature_counts.txt"
params:
input_string = lambda wildcards, input: ','.join(input)
# input_string = ','.join(expand("outs/feature_counts/{sample}.txt", sample=SAMPLES.keys()) +
# ["outs/pdna/feature_counts/pDNA.txt"])
shell:
"python scripts/combine_feature_counts.py {output} {params.input_string}"
rule extract_umi_pdna:
input: config['pdna_fastq']
output: "outs/pdna/umi/pDNA.fastq.gz"
shell:
"umi_tools extract --extract-method string "
"--bc-pattern NNNNNNNNNN "
"--stdin {input} --stdout {output}"
rule trim_reads_pdna:
input: "outs/pdna/umi/pDNA.fastq.gz"
output: "outs/pdna/trim/pDNA.fastq.gz"
threads: THREADS
params:
u6_promoter = config['trimming']['u6_promoter'],
sgrna_scaffold = config['trimming']['sgrna_scaffold'],
error_rate = config['trimming']['error_rate'],
min_len = config['trimming']['min_len']
shell:
"cutadapt -j {threads} -m {params.min_len} --discard-untrimmed "
"-g \"{params.u6_promoter}...{params.sgrna_scaffold};max_error_rate={params.error_rate}\" "
"-o {output} {input}"
def check_pdna_fastq(wildcards):
if (config['pdna_fastq'] is not ""):
return {'bam': "outs/pdna/alns/pDNA.bam", 'bamidx': "outs/pdna/alns/pDNA.bam.bai"}
else:
return {'feature_ref': config['feature_ref']}
rule feature_counts_pdna:
input: unpack(check_pdna_fastq)
output:
counts="outs/pdna/feature_counts/pDNA.txt"
log:
log="outs/pdna/feature_counts/pDNA.log"
run:
if (hasattr(input, 'bam')):
os.system("umi_tools count --per-contig --method " + config['dedup_method'] +
" --stdin=" + input.bam + " --stdout=" + output.counts + " --log=" + log.log)
else:
with open(output.counts, mode='w') as output_file:
output_csv = csv.writer(output_file, delimiter='\t')
output_csv.writerow(['gene', 'count'])
with open(input.feature_ref,mode='r') as input_file:
input_csv = csv.DictReader(input_file)
for row in input_csv:
output_csv.writerow([row['id'], '1'])
input_file.close()
output_file.close()
rule bowtie_align_pdna:
input:
donefile = "bowtie/feature_ref.done",
fastq = "outs/pdna/trim/pDNA.fastq.gz"
output:
sam = "outs/pdna/alns/pDNA.sam"
threads: THREADS
params:
index = "bowtie/feature_ref"
shell:
"bowtie --sam -v 1 -y -a --best -t -p {threads} {params.index} {input.fastq} {output.sam}"
def get_paired_fqs_sample_bc(wildcards):
sample_bc_id = SAMPLE_BC_IDS[wildcards.sample]
r1 = glob.glob(os.path.join(SAMPLE_BC_FASTQ_DIR, "**", sample_bc_id + "_*R1_*.fastq.gz"),
recursive=True)
r2 = glob.glob(os.path.join(SAMPLE_BC_FASTQ_DIR, "**", sample_bc_id + "_*R2_*.fastq.gz"),
recursive=True)
if len(r1) == 0:
raise ValueError(sample_bc_id + "has no matching sample barcode fastq file")
if len(r1) != len(r2):
raise ValueError(sample_bc_id + "has more than one matching sample barcode fastq file")
return {"read1": sorted(r1), "read2": sorted(r2)}
rule merge_fastqs_sample_bc:
input: unpack(get_paired_fqs_sample_bc)
output:
read1 = temp("outs/sample_bc/umi/{sample}_merged_R1.fastq.gz"),
read2 = temp("outs/sample_bc/umi/{sample}_merged_R2.fastq.gz")
shell:
"cat {input.read1} > {output.read1}; "
"cat {input.read2} > {output.read2}; "
rule extract_umi_sample_bc:
input:
read1 = "outs/sample_bc/umi/{sample}_merged_R1.fastq.gz",
read2 = "outs/sample_bc/umi/{sample}_merged_R2.fastq.gz"
output: "outs/sample_bc/umi/{sample}.fq.gz"
params:
whitelist = config['cell_barcode']['whitelist']
shell:
"umi_tools extract --extract-method regex --read2-stdout "
"--bc-pattern '(?P<cell_1>.{{16}})(?P<umi_1>.{{12}})' "
"--bc-pattern2 '.{{8}}(?P<discard_1>.*)' "
"--stdin {input.read1} --read2-in {input.read2} --stdout {output} "
"--filter-cell-barcode --whitelist {params.whitelist}"
rule sample_bc_flatfile:
input: fq="outs/sample_bc/umi/{sample}.fq.gz"
output: tsv="outs/sample_bc/umi/{sample}.tsv"
run:
o = open(output.tsv, 'w')
fq = gzip.open(input.fq, 'rt')
for bc in SeqIO.parse(fq, 'fastq'):
# UMI and Cell BC need to be switched for current version of UMI-tools
# extract appends _CB_UMI to the read ID
# whereas count_tab command expects format _UMI_CB
read_id = re.search("^(.*)_([ACGTN]+)_([ACGTN]+)$", bc.id)
new_id = read_id.group(1) + "_" + read_id.group(3) + "_" + read_id.group(2)
o.write(new_id + '\t' + str(bc.seq) + '\n')
o.close()
os.system("sort -k2,2 -o " + output.tsv + " " + output.tsv)
rule sample_bc_counts:
input:
tsv="outs/sample_bc/umi/{sample}.tsv"
output:
counts="outs/sample_bc/{sample}.txt",
log="outs/sample_bc/{sample}.log"
shell:
"umi_tools count_tab --per-cell --method {config[dedup_method]} "
"--stdin={input.tsv} --stdout={output.counts} --log={output.log}"
def get_paired_fqs(wildcards):
sample_id = FEATURE_BC_IDS[wildcards.sample]
r1 = glob.glob(os.path.join(FASTQ_DIR, "**", sample_id + "_*R1_*.fastq.gz"),
recursive=True)
r2 = glob.glob(os.path.join(FASTQ_DIR, "**", sample_id + "_*R2_*.fastq.gz"),
recursive=True)
if len(r1) == 0:
raise ValueError(sample_id + " has no matching input fastq file")
if len(r1) != len(r2):
raise ValueError(sample_id + " has different numbers of R1 and R2 fastq files")
return {"read1": sorted(r1), "read2": sorted(r2)}
rule merge_fastqs:
input: unpack(get_paired_fqs)
output:
read1 = temp("outs/trim/{sample}_merged_R1.fastq.gz"),
read2 = temp("outs/trim/{sample}_merged_R2.fastq.gz")
shell:
"cat {input.read1} > {output.read1}; "
"cat {input.read2} > {output.read2}; "
rule trim_reads:
input:
read1 = "outs/trim/{sample}_merged_R1.fastq.gz",
read2 = "outs/trim/{sample}_merged_R2.fastq.gz"
output:
read1 = "outs/trim/{sample}_R1.fastq.gz",
read2 = "outs/trim/{sample}_R2.fastq.gz"
threads: THREADS
params:
tso = config['trimming']['tso'],
sgrna_scaffold = config['trimming']['sgrna_scaffold'],
error_rate = config['trimming']['error_rate']
shell:
"cutadapt -j {threads} --discard-untrimmed -m 18 --pair-filter=first "
"-g \"{params.tso}...{params.sgrna_scaffold};max_error_rate={params.error_rate}\" "
"-o {output.read2} -p {output.read1} {input.read2} {input.read1}"
rule extract_umi:
input:
read1="outs/trim/{sample}_R1.fastq.gz",
read2="outs/trim/{sample}_R2.fastq.gz"
output:
"outs/umi/{sample}.fastq.gz"
params:
whitelist = config['cell_barcode']['whitelist']
shell:
"umi_tools extract --extract-method regex --read2-stdout "
"--bc-pattern '(?P<cell_1>.{{16}})(?P<umi_1>.{{12}})' "
"--bc-pattern2 '(?P<discard_1>.*).{{20}}' "
"--stdin {input.read1} --read2-in {input.read2} --stdout {output} "
"--filter-cell-barcode --whitelist {params.whitelist}"
rule make_library_fasta:
input:
feature_ref = config['feature_ref']
output:
fasta = "bowtie/feature_ref.fa"
run:
feature_ref = pd.read_csv(input.feature_ref).set_index("id", drop=False)
feature_seqs = [SeqRecord(Seq(s), id=i, description='')
for s, i in zip(feature_ref['sequence'], feature_ref['id'])]
with open (output.fasta, 'w') as fa:
SeqIO.write(feature_seqs, fa, "fasta")
rule bowtie_build:
input:
fasta = "bowtie/feature_ref.fa"
output:
touch("bowtie/feature_ref.done")
params:
basename = "bowtie/feature_ref"
shell:
"bowtie-build {input.fasta} {params.basename}"
rule bowtie_align:
input:
donefile = "bowtie/feature_ref.done",
fastq = "outs/umi/{sample}.fastq.gz"
output:
sam = "outs/alns/{sample}.sam"
threads: THREADS
params:
index = "bowtie/feature_ref"
shell:
"bowtie --sam -v 1 -y -a --best -t -p {threads} {params.index} {input.fastq} {output.sam}"
rule feature_counts:
input:
bam="outs/alns/{sample}.bam",
bamidx="outs/alns/{sample}.bam.bai",
output:
counts="outs/feature_counts/{sample}.txt",
log="outs/feature_counts/{sample}.log"
shell:
"umi_tools count --per-contig --per-cell --method {config[dedup_method]} "
"--stdin={input.bam} --stdout={output.counts} --log={output.log}"
rule sam_to_bam_sort:
input:
"{directory}{sample}.sam"
output:
"{directory}{sample}.bam"
threads: THREADS
shell:
"samtools view -b --threads {threads} {input} | "
"samtools sort -@ {threads} -o {output}"
rule samtools_index:
input:
"{directory}{sample}.bam"
output:
"{directory}{sample}.bam.bai"
threads: THREADS
shell:
"samtools index -@ {threads} {input}"