-
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpathfinding2.py
168 lines (145 loc) · 5.93 KB
/
pathfinding2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import pygame as pg
from os import path
import heapq
TILESIZE = 32
GRIDWIDTH = 28
GRIDHEIGHT = 15
WIDTH = TILESIZE * GRIDWIDTH
HEIGHT = TILESIZE * GRIDHEIGHT
BLACK = (0, 0, 0)
WHITE = (255, 255, 255)
GREEN = (14, 183, 63)
BLUE = (55, 121, 179)
RED = (255, 84, 76)
YELLOW = (221, 232, 63)
DARKGRAY = (40, 40, 40)
LIGHTGRAY = (100, 100, 100)
pg.init()
screen = pg.display.set_mode((WIDTH, HEIGHT))
clock = pg.time.Clock()
vec2 = pg.math.Vector2
class SquareGrid:
def __init__(self, width, height):
self.width = width
self.height = height
self.walls = []
self.connections = [vec2(1, 0), vec2(-1, 0), vec2(0, 1), vec2(0, -1)]
self.connections += [vec2(1, 1), vec2(1, -1), vec2(-1, 1), vec2(-1, -1)]
def in_bounds(self, node):
return 0 <= node.x < self.width and 0 <= node.y < self.height
def passable(self, node):
return node not in self.walls
def find_neighbors(self, node):
neighbors = [node + conn for conn in self.connections]
#if (node.x + node.y) % 2:
# neighbors.reverse()
neighbors = filter(self.in_bounds, neighbors)
neighbors = filter(self.passable, neighbors)
return neighbors
def draw(self):
for wall in self.walls:
rect = pg.Rect(wall * TILESIZE, (TILESIZE, TILESIZE))
pg.draw.rect(screen, LIGHTGRAY, rect)
class WeightedGrid(SquareGrid):
def __init__(self, width, height):
super().__init__(width, height)
self.weights = {}
def cost(self, from_node, to_node):
if (vec2(from_node) - vec2(to_node)).length_squared() == 1:
return self.weights.get(to_node, 0) + 10
else:
return self.weights.get(to_node, 0) + 14
class PriorityQueue:
def __init__(self):
self.nodes = []
def put(self, node, cost):
heapq.heappush(self.nodes, (cost, node))
def get(self):
return heapq.heappop(self.nodes)[1]
def empty(self):
return len(self.nodes) == 0
def vec2int(v):
return(int(v.x), int(v.y))
def heuristic(a, b):
return (abs(a.x - b.x) + abs(a.y - b.y)) * 10
# return ((a.x - b.x)**2 + (a.y - b.y)**2)**0.5 * 10
def dijkstra_search(graph, start, end):
frontier = PriorityQueue()
frontier.put(vec2int(start), 0)
path = {}
cost = {}
path[vec2int(start)] = None
cost[vec2int(start)] = 0
while not frontier.empty():
current = frontier.get()
if current == end:
break
for next_node in graph.find_neighbors(vec2(current)):
next_node = vec2int(next_node)
next_cost = cost[current] + graph.cost(current, next_node)
if next_node not in cost or next_cost < cost[next_node]:
cost[next_node] = next_cost
priority = next_cost + heuristic(end, vec2(next_node))
frontier.put(next_node, priority)
path[next_node] = vec2(current) - vec2(next_node)
return path
folder = path.dirname(__file__)
arrows = {}
arrow_img = pg.image.load(path.join(folder, 'arrowRight.png')).convert_alpha()
arrow_img = pg.transform.scale(arrow_img, (TILESIZE, TILESIZE))
for dir in [(1, 0), (0, 1), (-1, 0), (0, -1), (1, 1), (-1, 1), (1, -1), (-1, -1)]:
arrows[dir] = pg.transform.rotate(arrow_img, vec2(dir).angle_to(vec2(1, 0)))
g = WeightedGrid(GRIDWIDTH, GRIDHEIGHT)
walls = [(10, 7), (11, 7), (12, 7), (13, 7), (14, 7), (15, 7), (16, 7), (7, 7), (6, 7), (5, 7), (5, 5), (5, 6), (1, 6), (2, 6), (3, 6), (5, 10), (5, 11), (5, 12), (5, 9), (5, 8), (12, 8), (12, 9), (12, 10), (12, 11), (15, 14), (15, 13), (15, 12), (15, 11), (15, 10), (17, 7), (18, 7), (21, 7), (21, 6), (21, 5), (21, 4), (21, 3), (22, 5), (23, 5), (24, 5), (25, 5), (18, 10), (20, 10), (19, 10), (21, 10), (22, 10), (23, 10), (14, 4), (14, 5), (14, 6), (14, 0), (14, 1), (9, 2), (9, 1), (7, 3), (8, 3), (10, 3), (9, 3), (11, 3), (2, 5), (2, 4), (2, 3), (2, 2), (2, 0), (2, 1), (0, 11), (1, 11), (2, 11), (21, 2), (20, 11), (20, 12), (23, 13), (23, 14), (24, 10), (25, 10), (6, 12), (7, 12), (10, 12), (11, 12), (12, 12), (5, 3), (6, 3), (5, 4)]
for wall in walls:
g.walls.append(vec2(wall))
start = vec2(14, 8)
end = vec2(14, 10)
path = dijkstra_search(g, start, end)
def draw_grid():
for x in range(0, WIDTH, TILESIZE):
pg.draw.line(screen, LIGHTGRAY, (x, 0), (x, HEIGHT))
for y in range(0, HEIGHT, TILESIZE):
pg.draw.line(screen, LIGHTGRAY, (0, y), (WIDTH, y))
running = True
while running:
clock.tick(60)
for event in pg.event.get():
if event.type == pg.QUIT:
running = False
if event.type == pg.KEYDOWN and event.key == pg.K_m:
print([(int(loc.x), int(loc.y)) for loc in g.walls])
if event.type == pg.MOUSEBUTTONDOWN:
mpos = vec2(pg.mouse.get_pos()) // TILESIZE
if event.button == 1:
if mpos in g.walls:
g.walls.remove(mpos)
else:
g.walls.append(mpos)
if event.button == 3:
start = mpos
path = dijkstra_search(g, start, end)
screen.fill(DARKGRAY)
# fill explored area
for node in path:
x, y = node
rect = pg.Rect(x * TILESIZE, y * TILESIZE, TILESIZE, TILESIZE)
pg.draw.rect(screen, (75, 75, 75), rect)
draw_grid()
g.draw()
# draw path
current = end + path[vec2int(end)]
while current != start:
x, y = current
x = x * TILESIZE + TILESIZE / 2
y = y * TILESIZE + TILESIZE / 2
img = arrows[vec2int(path[(current.x, current.y)])]
r = img.get_rect(center=(x, y))
screen.blit(img, r)
current = current + path[vec2int(current)]
start_center = (int(start.x*TILESIZE+TILESIZE/2), int(start.y*TILESIZE+TILESIZE/2))
pg.draw.circle(screen, RED, start_center, TILESIZE//2)
end_center = (int(end.x*TILESIZE+TILESIZE/2), int(end.y*TILESIZE+TILESIZE/2))
pg.draw.circle(screen, GREEN, end_center, TILESIZE//2)
pg.display.flip()
pg.quit()