forked from NVIDIA/FastPhotoStyle
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocess_stylization_examples.py
51 lines (42 loc) · 1.88 KB
/
process_stylization_examples.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
"""
Copyright (C) 2018 NVIDIA Corporation. All rights reserved.
Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
"""
from __future__ import print_function
import argparse
import os
import torch
from photo_wct import PhotoWCT
import process_stylization
parser = argparse.ArgumentParser(description='Photorealistic Image Stylization')
parser.add_argument('--model', default='./PhotoWCTModels/photo_wct.pth',
help='Path to the PhotoWCT model. These are provided by the PhotoWCT submodule, please use `git submodule update --init --recursive` to pull.')
parser.add_argument('--cuda', type=bool, default=True, help='Enable CUDA.')
args = parser.parse_args()
folder = 'examples'
cont_img_folder = os.path.join(folder, 'content_img')
cont_seg_folder = os.path.join(folder, 'content_seg')
styl_img_folder = os.path.join(folder, 'style_img')
styl_seg_folder = os.path.join(folder, 'style_seg')
outp_img_folder = os.path.join(folder, 'results')
cont_img_list = [f for f in os.listdir(cont_img_folder) if os.path.isfile(os.path.join(cont_img_folder, f))]
cont_img_list.sort()
# Load model
p_wct = PhotoWCT()
p_wct.load_state_dict(torch.load(args.model))
for f in cont_img_list:
print("Process " + f)
content_image_path = os.path.join(cont_img_folder, f)
content_seg_path = os.path.join(cont_seg_folder, f).replace(".png", ".pgm")
style_image_path = os.path.join(styl_img_folder, f)
style_seg_path = os.path.join(styl_seg_folder, f).replace(".png", ".pgm")
output_image_path = os.path.join(outp_img_folder, f)
process_stylization.stylization(
p_wct=p_wct,
content_image_path=content_image_path,
style_image_path=style_image_path,
content_seg_path=content_seg_path,
style_seg_path=style_seg_path,
output_image_path=output_image_path,
cuda=args.cuda,
)