-
Notifications
You must be signed in to change notification settings - Fork 43
/
nodes.py
766 lines (663 loc) · 33.1 KB
/
nodes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
import torch
from torch.functional import F
import os
import numpy as np
import json
import random
from tqdm import tqdm
from contextlib import nullcontext
from .load_model import load_model
import comfy.model_management as mm
from comfy.utils import ProgressBar, common_upscale
import folder_paths
script_directory = os.path.dirname(os.path.abspath(__file__))
class DownloadAndLoadSAM2Model:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ([
'sam2_hiera_base_plus.safetensors',
'sam2_hiera_large.safetensors',
'sam2_hiera_small.safetensors',
'sam2_hiera_tiny.safetensors',
'sam2.1_hiera_base_plus.safetensors',
'sam2.1_hiera_large.safetensors',
'sam2.1_hiera_small.safetensors',
'sam2.1_hiera_tiny.safetensors',
],),
"segmentor": (
['single_image','video', 'automaskgenerator'],
),
"device": (['cuda', 'cpu', 'mps'], ),
"precision": ([ 'fp16','bf16','fp32'],
{
"default": 'fp16'
}),
},
}
RETURN_TYPES = ("SAM2MODEL",)
RETURN_NAMES = ("sam2_model",)
FUNCTION = "loadmodel"
CATEGORY = "SAM2"
def loadmodel(self, model, segmentor, device, precision):
if precision != 'fp32' and device == 'cpu':
raise ValueError("fp16 and bf16 are not supported on cpu")
if device == "cuda":
if torch.cuda.get_device_properties(0).major >= 8:
# turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices)
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
dtype = {"bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32}[precision]
device = {"cuda": torch.device("cuda"), "cpu": torch.device("cpu"), "mps": torch.device("mps")}[device]
download_path = os.path.join(folder_paths.models_dir, "sam2")
if precision != 'fp32' and "2.1" in model:
base_name, extension = model.rsplit('.', 1)
model = f"{base_name}-fp16.{extension}"
model_path = os.path.join(download_path, model)
print("model_path: ", model_path)
if not os.path.exists(model_path):
print(f"Downloading SAM2 model to: {model_path}")
from huggingface_hub import snapshot_download
snapshot_download(repo_id="Kijai/sam2-safetensors",
allow_patterns=[f"*{model}*"],
local_dir=download_path,
local_dir_use_symlinks=False)
model_mapping = {
"2.0": {
"base": "sam2_hiera_b+.yaml",
"large": "sam2_hiera_l.yaml",
"small": "sam2_hiera_s.yaml",
"tiny": "sam2_hiera_t.yaml"
},
"2.1": {
"base": "sam2.1_hiera_b+.yaml",
"large": "sam2.1_hiera_l.yaml",
"small": "sam2.1_hiera_s.yaml",
"tiny": "sam2.1_hiera_t.yaml"
}
}
version = "2.1" if "2.1" in model else "2.0"
model_cfg_path = next(
(os.path.join(script_directory, "sam2_configs", cfg)
for key, cfg in model_mapping[version].items() if key in model),
None
)
print(f"Using model config: {model_cfg_path}")
model = load_model(model_path, model_cfg_path, segmentor, dtype, device)
sam2_model = {
'model': model,
'dtype': dtype,
'device': device,
'segmentor' : segmentor,
'version': version
}
return (sam2_model,)
class Florence2toCoordinates:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"data": ("JSON", ),
"index": ("STRING", {"default": "0"}),
"batch": ("BOOLEAN", {"default": False}),
},
}
RETURN_TYPES = ("STRING", "BBOX")
RETURN_NAMES =("center_coordinates", "bboxes")
FUNCTION = "segment"
CATEGORY = "SAM2"
def segment(self, data, index, batch=False):
print(data)
try:
coordinates = coordinates.replace("'", '"')
coordinates = json.loads(coordinates)
except:
coordinates = data
print("Type of data:", type(data))
print("Data:", data)
if len(data)==0:
return (json.dumps([{'x': 0, 'y': 0}]),)
center_points = []
if index.strip(): # Check if index is not empty
indexes = [int(i) for i in index.split(",")]
else: # If index is empty, use all indices from data[0]
indexes = list(range(len(data[0])))
print("Indexes:", indexes)
bboxes = []
if batch:
for idx in indexes:
if 0 <= idx < len(data[0]):
for i in range(len(data)):
bbox = data[i][idx]
min_x, min_y, max_x, max_y = bbox
center_x = int((min_x + max_x) / 2)
center_y = int((min_y + max_y) / 2)
center_points.append({"x": center_x, "y": center_y})
bboxes.append(bbox)
else:
for idx in indexes:
if 0 <= idx < len(data[0]):
bbox = data[0][idx]
min_x, min_y, max_x, max_y = bbox
center_x = int((min_x + max_x) / 2)
center_y = int((min_y + max_y) / 2)
center_points.append({"x": center_x, "y": center_y})
bboxes.append(bbox)
else:
raise ValueError(f"There's nothing in index: {idx}")
coordinates = json.dumps(center_points)
print("Coordinates:", coordinates)
return (coordinates, bboxes)
class Sam2Segmentation:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"sam2_model": ("SAM2MODEL", ),
"image": ("IMAGE", ),
"keep_model_loaded": ("BOOLEAN", {"default": True}),
},
"optional": {
"coordinates_positive": ("STRING", {"forceInput": True}),
"coordinates_negative": ("STRING", {"forceInput": True}),
"bboxes": ("BBOX", ),
"individual_objects": ("BOOLEAN", {"default": False}),
"mask": ("MASK", ),
},
}
RETURN_TYPES = ("MASK", )
RETURN_NAMES =("mask", )
FUNCTION = "segment"
CATEGORY = "SAM2"
def segment(self, image, sam2_model, keep_model_loaded, coordinates_positive=None, coordinates_negative=None,
individual_objects=False, bboxes=None, mask=None):
offload_device = mm.unet_offload_device()
model = sam2_model["model"]
device = sam2_model["device"]
dtype = sam2_model["dtype"]
segmentor = sam2_model["segmentor"]
B, H, W, C = image.shape
if mask is not None:
input_mask = mask.clone().unsqueeze(1)
input_mask = F.interpolate(input_mask, size=(256, 256), mode="bilinear")
input_mask = input_mask.squeeze(1)
if segmentor == 'automaskgenerator':
raise ValueError("For automaskgenerator use Sam2AutoMaskSegmentation -node")
if segmentor == 'single_image' and B > 1:
print("Segmenting batch of images with single_image segmentor")
if segmentor == 'video' and bboxes is not None and "2.1" not in sam2_model["version"]:
raise ValueError("2.0 model doesn't support bboxes with video segmentor")
if segmentor == 'video': # video model needs images resized first thing
model_input_image_size = model.image_size
print("Resizing to model input image size: ", model_input_image_size)
image = common_upscale(image.movedim(-1,1), model_input_image_size, model_input_image_size, "bilinear", "disabled").movedim(1,-1)
#handle point coordinates
if coordinates_positive is not None:
try:
coordinates_positive = json.loads(coordinates_positive.replace("'", '"'))
coordinates_positive = [(coord['x'], coord['y']) for coord in coordinates_positive]
if coordinates_negative is not None:
coordinates_negative = json.loads(coordinates_negative.replace("'", '"'))
coordinates_negative = [(coord['x'], coord['y']) for coord in coordinates_negative]
except:
pass
if not individual_objects:
positive_point_coords = np.atleast_2d(np.array(coordinates_positive))
else:
positive_point_coords = np.array([np.atleast_2d(coord) for coord in coordinates_positive])
if coordinates_negative is not None:
negative_point_coords = np.array(coordinates_negative)
# Ensure both positive and negative coords are lists of 2D arrays if individual_objects is True
if individual_objects:
assert negative_point_coords.shape[0] <= positive_point_coords.shape[0], "Can't have more negative than positive points in individual_objects mode"
if negative_point_coords.ndim == 2:
negative_point_coords = negative_point_coords[:, np.newaxis, :]
# Extend negative coordinates to match the number of positive coordinates
while negative_point_coords.shape[0] < positive_point_coords.shape[0]:
negative_point_coords = np.concatenate((negative_point_coords, negative_point_coords[:1, :, :]), axis=0)
final_coords = np.concatenate((positive_point_coords, negative_point_coords), axis=1)
else:
final_coords = np.concatenate((positive_point_coords, negative_point_coords), axis=0)
else:
final_coords = positive_point_coords
# Handle possible bboxes
if bboxes is not None:
boxes_np_batch = []
for bbox_list in bboxes:
boxes_np = []
for bbox in bbox_list:
boxes_np.append(bbox)
boxes_np = np.array(boxes_np)
boxes_np_batch.append(boxes_np)
if individual_objects:
final_box = np.array(boxes_np_batch)
else:
final_box = np.array(boxes_np)
final_labels = None
#handle labels
if coordinates_positive is not None:
if not individual_objects:
positive_point_labels = np.ones(len(positive_point_coords))
else:
positive_labels = []
for point in positive_point_coords:
positive_labels.append(np.array([1])) # 1)
positive_point_labels = np.stack(positive_labels, axis=0)
if coordinates_negative is not None:
if not individual_objects:
negative_point_labels = np.zeros(len(negative_point_coords)) # 0 = negative
final_labels = np.concatenate((positive_point_labels, negative_point_labels), axis=0)
else:
negative_labels = []
for point in positive_point_coords:
negative_labels.append(np.array([0])) # 1)
negative_point_labels = np.stack(negative_labels, axis=0)
#combine labels
final_labels = np.concatenate((positive_point_labels, negative_point_labels), axis=1)
else:
final_labels = positive_point_labels
print("combined labels: ", final_labels)
print("combined labels shape: ", final_labels.shape)
mask_list = []
try:
model.to(device)
except:
model.model.to(device)
autocast_condition = not mm.is_device_mps(device)
with torch.autocast(mm.get_autocast_device(device), dtype=dtype) if autocast_condition else nullcontext():
if segmentor == 'single_image':
image_np = (image.contiguous() * 255).byte().numpy()
comfy_pbar = ProgressBar(len(image_np))
tqdm_pbar = tqdm(total=len(image_np), desc="Processing Images")
for i in range(len(image_np)):
model.set_image(image_np[i])
if bboxes is None:
input_box = None
else:
if len(image_np) > 1:
input_box = final_box[i]
input_box = final_box
out_masks, scores, logits = model.predict(
point_coords=final_coords if coordinates_positive is not None else None,
point_labels=final_labels if coordinates_positive is not None else None,
box=input_box,
multimask_output=True if not individual_objects else False,
mask_input = input_mask[i].unsqueeze(0) if mask is not None else None,
)
if out_masks.ndim == 3:
sorted_ind = np.argsort(scores)[::-1]
out_masks = out_masks[sorted_ind][0] #choose only the best result for now
scores = scores[sorted_ind]
logits = logits[sorted_ind]
mask_list.append(np.expand_dims(out_masks, axis=0))
else:
_, _, H, W = out_masks.shape
# Combine masks for all object IDs in the frame
combined_mask = np.zeros((H, W), dtype=bool)
for out_mask in out_masks:
combined_mask = np.logical_or(combined_mask, out_mask)
combined_mask = combined_mask.astype(np.uint8)
mask_list.append(combined_mask)
comfy_pbar.update(1)
tqdm_pbar.update(1)
elif segmentor == 'video':
mask_list = []
if hasattr(self, 'inference_state'):
model.reset_state(self.inference_state)
self.inference_state = model.init_state(image.permute(0, 3, 1, 2).contiguous(), H, W, device=device)
if bboxes is None:
input_box = None
else:
input_box = bboxes[0]
if individual_objects and bboxes is not None:
raise ValueError("bboxes not supported with individual_objects")
if individual_objects:
for i, (coord, label) in enumerate(zip(final_coords, final_labels)):
_, out_obj_ids, out_mask_logits = model.add_new_points_or_box(
inference_state=self.inference_state,
frame_idx=0,
obj_id=i,
points=final_coords[i],
labels=final_labels[i],
clear_old_points=True,
box=input_box
)
else:
_, out_obj_ids, out_mask_logits = model.add_new_points_or_box(
inference_state=self.inference_state,
frame_idx=0,
obj_id=1,
points=final_coords if coordinates_positive is not None else None,
labels=final_labels if coordinates_positive is not None else None,
clear_old_points=True,
box=input_box
)
pbar = ProgressBar(B)
video_segments = {}
for out_frame_idx, out_obj_ids, out_mask_logits in model.propagate_in_video(self.inference_state):
video_segments[out_frame_idx] = {
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
for i, out_obj_id in enumerate(out_obj_ids)
}
pbar.update(1)
if individual_objects:
_, _, H, W = out_mask_logits.shape
# Combine masks for all object IDs in the frame
combined_mask = np.zeros((H, W), dtype=np.uint8)
for i, out_obj_id in enumerate(out_obj_ids):
out_mask = (out_mask_logits[i] > 0.0).cpu().numpy()
combined_mask = np.logical_or(combined_mask, out_mask)
video_segments[out_frame_idx] = combined_mask
if individual_objects:
for frame_idx, combined_mask in video_segments.items():
mask_list.append(combined_mask)
else:
for frame_idx, obj_masks in video_segments.items():
for out_obj_id, out_mask in obj_masks.items():
mask_list.append(out_mask)
if not keep_model_loaded:
try:
model.to(offload_device)
except:
model.model.to(offload_device)
out_list = []
for mask in mask_list:
mask_tensor = torch.from_numpy(mask)
mask_tensor = mask_tensor.permute(1, 2, 0)
mask_tensor = mask_tensor[:, :, 0]
out_list.append(mask_tensor)
mask_tensor = torch.stack(out_list, dim=0).cpu().float()
return (mask_tensor,)
class Sam2VideoSegmentationAddPoints:
@classmethod
def IS_CHANGED(s): # TODO: smarter reset?
return ""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"sam2_model": ("SAM2MODEL", ),
"coordinates_positive": ("STRING", {"forceInput": True}),
"frame_index": ("INT", {"default": 0}),
"object_index": ("INT", {"default": 0}),
},
"optional": {
"image": ("IMAGE", ),
"coordinates_negative": ("STRING", {"forceInput": True}),
"prev_inference_state": ("SAM2INFERENCESTATE", ),
},
}
RETURN_TYPES = ("SAM2MODEL", "SAM2INFERENCESTATE", )
RETURN_NAMES =("sam2_model", "inference_state", )
FUNCTION = "segment"
CATEGORY = "SAM2"
def segment(self, sam2_model, coordinates_positive, frame_index, object_index, image=None, coordinates_negative=None, prev_inference_state=None):
offload_device = mm.unet_offload_device()
model = sam2_model["model"]
device = sam2_model["device"]
dtype = sam2_model["dtype"]
segmentor = sam2_model["segmentor"]
if segmentor != 'video':
raise ValueError("Loaded model is not SAM2Video")
if image is not None:
B, H, W, C = image.shape
model_input_image_size = model.image_size
print("Resizing to model input image size: ", model_input_image_size)
image = common_upscale(image.movedim(-1,1), model_input_image_size, model_input_image_size, "bilinear", "disabled").movedim(1,-1)
try:
coordinates_positive = json.loads(coordinates_positive.replace("'", '"'))
coordinates_positive = [(coord['x'], coord['y']) for coord in coordinates_positive]
if coordinates_negative is not None:
coordinates_negative = json.loads(coordinates_negative.replace("'", '"'))
coordinates_negative = [(coord['x'], coord['y']) for coord in coordinates_negative]
except:
pass
positive_point_coords = np.array(coordinates_positive)
positive_point_labels = [1] * len(positive_point_coords) # 1 = positive
positive_point_labels = np.array(positive_point_labels)
print("positive coordinates: ", positive_point_coords)
if coordinates_negative is not None:
negative_point_coords = np.array(coordinates_negative)
negative_point_labels = [0] * len(negative_point_coords) # 0 = negative
negative_point_labels = np.array(negative_point_labels)
print("negative coordinates: ", negative_point_coords)
# Combine coordinates and labels
else:
negative_point_coords = np.empty((0, 2))
negative_point_labels = np.array([])
# Ensure both positive and negative coordinates are 2D arrays
positive_point_coords = np.atleast_2d(positive_point_coords)
negative_point_coords = np.atleast_2d(negative_point_coords)
# Ensure both positive and negative labels are 1D arrays
positive_point_labels = np.atleast_1d(positive_point_labels)
negative_point_labels = np.atleast_1d(negative_point_labels)
combined_coords = np.concatenate((positive_point_coords, negative_point_coords), axis=0)
combined_labels = np.concatenate((positive_point_labels, negative_point_labels), axis=0)
model.to(device)
autocast_condition = not mm.is_device_mps(device)
with torch.autocast(mm.get_autocast_device(model.device), dtype=dtype) if autocast_condition else nullcontext():
if prev_inference_state is None:
print("Initializing inference state")
if hasattr(self, 'inference_state'):
model.reset_state(self.inference_state)
self.inference_state = model.init_state(image.permute(0, 3, 1, 2).contiguous(), H, W, device=device)
else:
print("Using previous inference state")
B = prev_inference_state['num_frames']
self.inference_state = prev_inference_state['inference_state']
_, out_obj_ids, out_mask_logits = model.add_new_points(
inference_state=self.inference_state,
frame_idx=frame_index,
obj_id=object_index,
points=combined_coords,
labels=combined_labels,
)
inference_state = {
"inference_state": self.inference_state,
"num_frames": B,
}
sam2_model = {
'model': model,
'dtype': dtype,
'device': device,
'segmentor' : segmentor
}
return (sam2_model, inference_state,)
class Sam2VideoSegmentation:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"sam2_model": ("SAM2MODEL", ),
"inference_state": ("SAM2INFERENCESTATE", ),
"keep_model_loaded": ("BOOLEAN", {"default": True}),
},
}
RETURN_TYPES = ("MASK", )
RETURN_NAMES =("mask", )
FUNCTION = "segment"
CATEGORY = "SAM2"
def segment(self, sam2_model, inference_state, keep_model_loaded):
offload_device = mm.unet_offload_device()
model = sam2_model["model"]
device = sam2_model["device"]
dtype = sam2_model["dtype"]
segmentor = sam2_model["segmentor"]
inference_state = inference_state["inference_state"]
B = inference_state["num_frames"]
if segmentor != 'video':
raise ValueError("Loaded model is not SAM2Video")
model.to(device)
autocast_condition = not mm.is_device_mps(device)
with torch.autocast(mm.get_autocast_device(device), dtype=dtype) if autocast_condition else nullcontext():
#if hasattr(self, 'inference_state'):
# model.reset_state(self.inference_state)
pbar = ProgressBar(B)
video_segments = {}
for out_frame_idx, out_obj_ids, out_mask_logits in model.propagate_in_video(inference_state):
print("out_mask_logits",out_mask_logits.shape)
_, _, H, W = out_mask_logits.shape
# Combine masks for all object IDs in the frame
combined_mask = np.zeros((H, W), dtype=np.uint8)
for i, out_obj_id in enumerate(out_obj_ids):
out_mask = (out_mask_logits[i] > 0.0).cpu().numpy()
combined_mask = np.logical_or(combined_mask, out_mask)
video_segments[out_frame_idx] = combined_mask
pbar.update(1)
mask_list = []
# Collect the combined masks
for frame_idx, combined_mask in video_segments.items():
mask_list.append(combined_mask)
print(f"Total masks collected: {len(mask_list)}")
if not keep_model_loaded:
model.to(offload_device)
out_list = []
for mask in mask_list:
mask_tensor = torch.from_numpy(mask)
mask_tensor = mask_tensor.permute(1, 2, 0)
mask_tensor = mask_tensor[:, :, 0]
out_list.append(mask_tensor)
mask_tensor = torch.stack(out_list, dim=0).cpu().float()
return (mask_tensor,)
class Sam2AutoSegmentation:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"sam2_model": ("SAM2MODEL", ),
"image": ("IMAGE", ),
"points_per_side": ("INT", {"default": 32}),
"points_per_batch": ("INT", {"default": 64}),
"pred_iou_thresh": ("FLOAT", {"default": 0.8, "min": 0.0, "max": 1.0, "step": 0.01}),
"stability_score_thresh": ("FLOAT", {"default": 0.95, "min": 0.0, "max": 1.0, "step": 0.01}),
"stability_score_offset": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
"mask_threshold": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
"crop_n_layers": ("INT", {"default": 0}),
"box_nms_thresh": ("FLOAT", {"default": 0.7, "min": 0.0, "max": 1.0, "step": 0.01}),
"crop_nms_thresh": ("FLOAT", {"default": 0.7, "min": 0.0, "max": 1.0, "step": 0.01}),
"crop_overlap_ratio": ("FLOAT", {"default": 0.34, "min": 0.0, "max": 1.0, "step": 0.01}),
"crop_n_points_downscale_factor": ("INT", {"default": 1}),
"min_mask_region_area": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
"use_m2m": ("BOOLEAN", {"default": False}),
"keep_model_loaded": ("BOOLEAN", {"default": True}),
},
}
RETURN_TYPES = ("MASK", "IMAGE", "BBOX",)
RETURN_NAMES =("mask", "segmented_image", "bbox" ,)
FUNCTION = "segment"
CATEGORY = "SAM2"
def segment(self, image, sam2_model, points_per_side, points_per_batch, pred_iou_thresh, stability_score_thresh,
stability_score_offset, crop_n_layers, box_nms_thresh, crop_n_points_downscale_factor, min_mask_region_area,
use_m2m, mask_threshold, crop_nms_thresh, crop_overlap_ratio, keep_model_loaded):
offload_device = mm.unet_offload_device()
model = sam2_model["model"]
device = sam2_model["device"]
dtype = sam2_model["dtype"]
segmentor = sam2_model["segmentor"]
if segmentor != 'automaskgenerator':
raise ValueError("Loaded model is not SAM2AutomaticMaskGenerator")
model.points_per_side=points_per_side
model.points_per_batch=points_per_batch
model.pred_iou_thresh=pred_iou_thresh
model.stability_score_thresh=stability_score_thresh
model.stability_score_offset=stability_score_offset
model.crop_n_layers=crop_n_layers
model.box_nms_thresh=box_nms_thresh
model.crop_n_points_downscale_factor=crop_n_points_downscale_factor
model.crop_nms_thresh=crop_nms_thresh
model.crop_overlap_ratio=crop_overlap_ratio
model.min_mask_region_area=min_mask_region_area
model.use_m2m=use_m2m
model.mask_threshold=mask_threshold
model.predictor.model.to(device)
B, H, W, C = image.shape
image_np = (image.contiguous() * 255).byte().numpy()
out_list = []
segment_out_list = []
mask_list=[]
pbar = ProgressBar(B)
autocast_condition = not mm.is_device_mps(device)
with torch.autocast(mm.get_autocast_device(device), dtype=dtype) if autocast_condition else nullcontext():
for img_np in image_np:
result_dict = model.generate(img_np)
mask_list = [item['segmentation'] for item in result_dict]
bbox_list = [item['bbox'] for item in result_dict]
# Generate random colors for each mask
num_masks = len(mask_list)
colors = [tuple(random.choices(range(256), k=3)) for _ in range(num_masks)]
# Create a blank image to overlay masks
overlay_image = np.zeros((H, W, 3), dtype=np.uint8)
# Create a combined mask initialized to zeros
combined_mask = np.zeros((H, W), dtype=np.uint8)
# Iterate through masks and color them
for mask, color in zip(mask_list, colors):
# Combine masks using logical OR
combined_mask = np.logical_or(combined_mask, mask).astype(np.uint8)
# Convert mask to numpy array
mask_np = mask.astype(np.uint8)
# Color the mask
colored_mask = np.zeros_like(overlay_image)
for i in range(3): # Apply color channel-wise
colored_mask[:, :, i] = mask_np * color[i]
# Blend the colored mask with the overlay image
overlay_image = np.where(colored_mask > 0, colored_mask, overlay_image)
out_list.append(torch.from_numpy(combined_mask))
segment_out_list.append(overlay_image)
pbar.update(1)
stacked_array = np.stack(segment_out_list, axis=0)
segment_image_tensor = torch.from_numpy(stacked_array).float() / 255
if not keep_model_loaded:
model.predictor.model.to(offload_device)
mask_tensor = torch.stack(out_list, dim=0)
return (mask_tensor.cpu().float(), segment_image_tensor.cpu().float(), bbox_list)
#WIP
# class OwlV2Detector:
# @classmethod
# def INPUT_TYPES(s):
# return {
# "required": {
# "image": ("IMAGE", ),
# },
# }
# RETURN_TYPES = ("MASK", )
# RETURN_NAMES =("mask", )
# FUNCTION = "segment"
# CATEGORY = "SAM2"
# def segment(self, image):
# from transformers import Owlv2Processor, Owlv2ForObjectDetection
# device = mm.get_torch_device()
# offload_device = mm.unet_offload_device()
# processor = Owlv2Processor.from_pretrained("google/owlv2-base-patch16-ensemble")
# model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-base-patch16-ensemble")
# url = "http://images.cocodataset.org/val2017/000000039769.jpg"
# image = Image.open(requests.get(url, stream=True).raw)
# texts = [["a photo of a cat", "a photo of a dog"]]
# inputs = processor(text=texts, images=image, return_tensors="pt")
# outputs = model(**inputs)
# # Target image sizes (height, width) to rescale box predictions [batch_size, 2]
# target_sizes = torch.Tensor([image.size[::-1]])
# # Convert outputs (bounding boxes and class logits) to Pascal VOC Format (xmin, ymin, xmax, ymax)
# results = processor.post_process_object_detection(outputs=outputs, target_sizes=target_sizes, threshold=0.1)
# i = 0 # Retrieve predictions for the first image for the corresponding text queries
# text = texts[i]
# boxes, scores, labels = results[i]["boxes"], results[i]["scores"], results[i]["labels"]
# for box, score, label in zip(boxes, scores, labels):
# box = [round(i, 2) for i in box.tolist()]
# print(f"Detected {text[label]} with confidence {round(score.item(), 3)} at location {box}")
# return (mask_tensor,)
NODE_CLASS_MAPPINGS = {
"DownloadAndLoadSAM2Model": DownloadAndLoadSAM2Model,
"Sam2Segmentation": Sam2Segmentation,
"Florence2toCoordinates": Florence2toCoordinates,
"Sam2AutoSegmentation": Sam2AutoSegmentation,
"Sam2VideoSegmentationAddPoints": Sam2VideoSegmentationAddPoints,
"Sam2VideoSegmentation": Sam2VideoSegmentation
}
NODE_DISPLAY_NAME_MAPPINGS = {
"DownloadAndLoadSAM2Model": "(Down)Load SAM2Model",
"Sam2Segmentation": "Sam2Segmentation",
"Florence2toCoordinates": "Florence2 Coordinates",
"Sam2AutoSegmentation": "Sam2AutoSegmentation",
"Sam2VideoSegmentationAddPoints": "Sam2VideoSegmentationAddPoints",
"Sam2VideoSegmentation": "Sam2VideoSegmentation"
}