forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
CopyKernel.cpp
62 lines (55 loc) · 1.72 KB
/
CopyKernel.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
#include <ATen/ATen.h>
#include <ATen/Dispatch.h>
#include <ATen/native/Copy.h>
#include <ATen/native/TensorIterator.h>
#include <ATen/native/cpu/Loops.h>
namespace at {
namespace native {
namespace {
template <typename self_T>
void copy_kernel_cast(TensorIterator& iter) {
AT_DISPATCH_ALL_TYPES_AND3(
ScalarType::Half,
ScalarType::Bool,
ScalarType::BFloat16,
iter.dtype(1),
"copy_kernel_cast",
[&] {
cpu_kernel(iter, [=](scalar_t a) -> self_T {
return static_cast<self_T>(
static_cast<at::native::inter_copy_type_t<self_T>>(a));
});
});
}
static void copy_kernel(TensorIterator& iter, bool non_blocking) {
ScalarType dtype = iter.dtype(0);
if (dtype == iter.dtype(1)) {
if (dtype == ScalarType::Half) {
cpu_kernel(iter, [=](at::Half a) -> at::Half { return a; });
} else if (dtype == ScalarType::BFloat16) {
cpu_kernel(iter, [=](at::BFloat16 a) -> at::BFloat16 { return a; });
} else if (isQIntType(dtype)) {
AT_DISPATCH_QINT_TYPES(dtype, "copy_kernel", [&] {
cpu_kernel(
iter,
[=](scalar_t a) -> scalar_t {return a; });
});
} else {
AT_DISPATCH_ALL_TYPES_AND(
ScalarType::Bool, dtype, "copy_kernel", [&] {
cpu_kernel_vec(
iter,
[=](scalar_t a) -> scalar_t { return a; },
[=](Vec256<scalar_t> a) { return a; });
});
}
} else {
AT_DISPATCH_ALL_TYPES_AND3(ScalarType::Half, ScalarType::Bool, ScalarType::BFloat16, dtype, "copy_", [&] {
copy_kernel_cast<scalar_t>(iter);
});
}
}
} // anonymous namespace
REGISTER_DISPATCH(copy_stub, ©_kernel);
} // namespace native
} // namespace at