forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
THCTensorRandom.cuh
396 lines (340 loc) · 12.9 KB
/
THCTensorRandom.cuh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
#ifndef THC_TENSOR_RANDOM_CUH
#define THC_TENSOR_RANDOM_CUH
#include <THC/THCNumerics.cuh>
#include <THC/THCReduceApplyUtils.cuh>
#include <THC/THCTensorMathReduce.cuh>
#include <curand_kernel.h>
#define MAX_NUM_BLOCKS 200
#define BLOCK_SIZE 256
template <typename T>
__global__ void
multinomialAliasDrawKernel(int size, int64_t *output, int64_t *J, T *q, int64_t K, T *uniform, T *bernoulli){
int64_t idx = blockIdx.x * BLOCK_SIZE + threadIdx.x;
if (idx < size) {
int64_t rand_ind = ScalarConvert<T, int64_t>::to(uniform[idx]);
T bern_uniform = bernoulli[idx];
int _mask = (int) THCNumerics<T>::lt(bern_uniform, q[rand_ind]);
output[idx] = J[rand_ind]*(1 -_mask) + rand_ind * _mask;
}
}
template <typename T>
__global__ void
aliasMultinomialFilter(T *q, T *probs, int64_t *smaller, int64_t *larger, int64_t *J_data, int64_t *larger_short_data, int64_t *smaller_short_data, T one, int64_t inputsize){
int64_t idx = blockIdx.x * BLOCK_SIZE + threadIdx.x;
if (idx < inputsize) {
larger_short_data[idx] = 0;
smaller_short_data[idx] = 0;
J_data[idx]= -1;
T val = THCNumerics<T>::mul(probs[idx], ScalarConvert<int64_t, T>::to(inputsize));
if (THCNumerics<T>::lt(val, one)) {
smaller[idx] = idx+1;
larger[idx] = 0;
} else {
larger[idx] = idx+1;
smaller[idx] = 0;
}
q[idx] = val;
}
}
template <typename T>
__global__ void
condDiv(T *q, int64_t *J, int64_t inputsize, T q_max) {
int64_t idx = blockIdx.x * BLOCK_SIZE + threadIdx.x;
T one = ScalarConvert<int, T>::to(1);
if (idx < inputsize) {
if (J[idx] < 0) {
q[idx] = one;
} else {
if (THCNumerics<T>::gt(q_max, one)) {
q[idx] = THCNumerics<T>::div(q[idx], q_max);
}
}
}
}
#undef MAX_NUM_BLOCKS
#undef BLOCK_SIZE
// Normalizes the L1 norm of every row to 1; used by multinomial
template <typename T>
#ifdef __HIP_PLATFORM_HCC__
C10_LAUNCH_BOUNDS_1(1024)
#endif
__global__ void renormRowsL1(T* dist, long rows, long cols) {
extern __shared__ unsigned char my_smem[];
T *smem = reinterpret_cast<T *>(my_smem);
T zero = ScalarConvert<int, T>::to(0);
T val;
for (int64_t row = blockIdx.x; row < rows; row += gridDim.x) {
T sum = ScalarConvert<int, T>::to(0);
for (int64_t col = threadIdx.x; col < cols; col += blockDim.x) {
val = dist[row * cols + col];
assert(! THCNumerics<T>::lt(val, zero)); // ! < 0 for NaN handling
sum = THCNumerics<T>::add(sum, val);
}
sum = reduceBlock(smem, blockDim.x, sum, ReduceAdd<T>(), zero);
if (threadIdx.x == 0) {
assert(! THCNumerics<T>::lt(sum, zero)); // ! < 0 for NaN handling
smem[0] = sum;
}
__syncthreads();
sum = smem[0];
if (THCNumerics<T>::gt(sum, ScalarConvert<int, T>::to(0))) {
for (int64_t col = threadIdx.x; col < cols; col += blockDim.x) {
dist[row * cols + col] = THCNumerics<T>::div(dist[row * cols + col], sum);
}
}
}
}
template <typename T>
__device__ int binarySearchForMultinomial(T* cumdist,
T* dist,
int size,
T val) {
int start = 0;
int end = size;
// cumdist[size - 1] = 0 => all zero prob dist
assert(THCNumerics<T>::gt(cumdist[size - 1], 0));
while (end - start > 0) {
int mid = start + (end - start) / 2;
T midVal = cumdist[mid];
if (THCNumerics<T>::lt(midVal, val)) {
start = mid + 1;
} else {
end = mid;
}
}
if (start == size) {
// No probability mass or precision problems; just return the
// first non-zero element by setting start to size-1 here,
// the code below will move it to the last non-zero probability
// this actually can happen when the random number is 1
// (github pytorch issue #4858).
start = size - 1;
}
while(start >= 1 && THCNumerics<T>::eq(dist[start], 0)) start--;
return start;
}
template <typename T, typename AccT>
#ifdef __HIP_PLATFORM_HCC__
C10_LAUNCH_BOUNDS_1(1024)
#endif
__global__ void
sampleMultinomialOnce(int64_t* dest,
int64_t distributions,
int categories,
T* sampled,
T* dist,
int stride_dist, // dist->stride(0)
int stride_categories // dist->stride(1)
) {
extern __shared__ unsigned char my_smem[];
__shared__ bool found;
// Shared Memory hold blockdim.x T for holding the cumulative sum,
// blockDim.x AccT for normalizing the probabilities,
T *smem = reinterpret_cast<T *>(my_smem);
AccT *asmem = reinterpret_cast<AccT *>(&my_smem[blockDim.x * sizeof(T)]);
AccT accZero = ScalarConvert<int, AccT>::to(0);
T zero = ScalarConvert<int, T>::to(0);
for (int64_t curDist = blockIdx.x;
curDist < distributions; curDist += gridDim.x) {
// Each block handles one distribution
// First pass, find the total sum of the distribution
AccT sum = accZero;
T val;
for (int cat = threadIdx.x; cat < categories; cat += blockDim.x) {
val = dist[curDist * stride_dist + cat * stride_categories];
assert(THCNumerics<T>::ge(val, zero));
assert(!THCNumerics<T>::isinf(val));
assert(!THCNumerics<T>::isnan(val));
sum = THCNumerics<AccT>::add(sum, ScalarConvert<T, AccT>::to(val));
}
// threadIdx.x == 0 has the sum value from this
sum = reduceBlock(asmem, blockDim.x, sum, ReduceAdd<AccT>(), accZero);
// Broadcast sum and sample value
if (threadIdx.x == 0) {
// Make sure the sum of our distribution didn't overflow
assert(!isinf(sum));
assert(THCNumerics<AccT>::gt(sum, accZero));
asmem[0] = sum;
smem[0] = sampled[curDist];
}
__syncthreads();
sum = asmem[0];
T sample = smem[0];
__syncthreads();
if (THCNumerics<AccT>::eq(sum, accZero)) {
// Choose the first element
if (threadIdx.x == 0) {
dest[curDist] = 0;
}
continue;
}
int chunks = THCCeilDiv(categories, (int) blockDim.x);
T prevHighProb = zero;
found = false;
for (int chunk = 0; chunk < chunks && !found; ++chunk) {
// All threads in bounds load a value
int cat = chunk * blockDim.x + threadIdx.x;
T dist_val = ScalarConvert<AccT, T>::to(
cat < categories ?
THCNumerics<AccT>::div(
ScalarConvert<T, AccT>::to(dist[curDist * stride_dist + cat * stride_categories]),
sum) :
accZero);
smem[threadIdx.x] = dist_val;
__syncthreads();
// Perform an inclusive prefix sum of the shared memory contents
for (int offset = 1; offset < blockDim.x; offset *= 2) {
T val = zero;
if (threadIdx.x >= offset) {
val = THCNumerics<T>::add(smem[threadIdx.x - offset], smem[threadIdx.x]);
}
__syncthreads();
if (threadIdx.x >= offset) {
smem[threadIdx.x] = val;
}
__syncthreads();
}
// Each thread will check to see if the sample falls in its
// bucket
T curBucket = THCNumerics<T>::add(smem[threadIdx.x], prevHighProb);
T prevBucket =
threadIdx.x == 0 ? prevHighProb :
THCNumerics<T>::add(smem[threadIdx.x - 1], prevHighProb);
bool inBucket =
(cat < categories) &&
(!THCNumerics<T>::ge(sample, curBucket)) &&
(THCNumerics<T>::ge(sample, prevBucket)) &&
(THCNumerics<T>::gt(dist_val, zero));
if (inBucket) {
// We're done; we have the sample
// Torch indices are 1-based
dest[curDist] = cat;
found = true;
}
// Store the previous scan's high value for future use
prevHighProb = THCNumerics<T>::add(prevHighProb, smem[blockDim.x - 1]);
__syncthreads();
}
if (threadIdx.x == 0 && !found) {
// This should address a rare bug where we don't select a valid index. This likely occurs when
// due to floating point arithmetic rounding errors, our cumulative sum does not add up to 1, but
// and our uniform sample is greater than this value. In this case we likely have unitialized memory
// in dest[curDist]. So basically we will loop through the distribution and pick the largest index
// where the distribution is non-zero. This is obviously terribly inefficient, but due to the
// rarity in which this occurs, this should not be an issue.
for (int cat = categories - 1; cat >= 0; --cat) {
if (THCNumerics<T>::gt(dist[curDist * stride_dist + cat * stride_categories], zero)) {
dest[curDist] = cat;
break;
}
}
}
}
}
template <typename T>
__global__ void
sampleMultinomialWithReplacement(std::pair<uint64_t, uint64_t> seeds,
int totalSamples,
int64_t* dest,
int64_t distributions,
int categories,
T* normDistPrefixSum,
T* normDist) {
// At the moment, each warp computes one sample value in the binary
// search due to divergence. It seems possible to compute multiple
// values and limit divergence though later on.
// global index formula for 1D grid of 2D blocks
int idx = blockIdx.x * blockDim.x * blockDim.y + threadIdx.y * blockDim.x + threadIdx.x;
curandStatePhilox4_32_10_t state;
curand_init(seeds.first, idx, seeds.second, &state);
// The block determines the distribution for which we generate a point
for (int64_t curDist = blockIdx.x;
curDist < distributions;
curDist += gridDim.x) {
for (int sampleBase = 0;
sampleBase < totalSamples; sampleBase += blockDim.y) {
// The warp determines the sample
int sample = sampleBase + threadIdx.y;
// All threads participate in this
auto rand = curand_uniform4(&state);
T r = ScalarConvert<float, T>::to(rand.x);
if (threadIdx.x == 0 && sample < totalSamples) {
// Find the bucket that a uniform sample lies in
int choice = binarySearchForMultinomial<T>(
normDistPrefixSum + curDist * categories,
normDist + curDist * categories,
categories,
r);
// Torch indices are 1-based
dest[curDist * totalSamples + sample] = choice;
}
}
}
}
template <typename T>
__global__ void
sampleMultinomialWithoutReplacement(std::pair<uint64_t, uint64_t> seeds,
int totalSamples,
int sample,
int64_t* dest,
int64_t distributions,
int categories,
T* origDist,
T* normDistPrefixSum) {
// At the moment, each warp computes one sample value in the binary
// search due to divergence. It seems possible to compute multiple
// values and limit divergence though later on.
// global index formula for 1D grid of 2D blocks
int idx = blockIdx.x * blockDim.x * blockDim.y + threadIdx.y * blockDim.x + threadIdx.x;
curandStatePhilox4_32_10_t state;
curand_init(seeds.first, idx, seeds.second, &state);
// The block and warp determines the distribution for which we
// generate a point
for (int64_t curDistBase = blockIdx.x * blockDim.y;
curDistBase < distributions;
curDistBase += gridDim.x * blockDim.y) {
// The warp determines the distribution
int64_t curDist = curDistBase + threadIdx.y;
// All threads must participate in this
auto rand = curand_uniform4(&state);
T r = ScalarConvert<float, T>::to(rand.x);
if (threadIdx.x == 0 && curDist < distributions) {
// Find the bucket that a uniform sample lies in
int choice = binarySearchForMultinomial<T>(
normDistPrefixSum + curDist * categories,
origDist + curDist * categories,
categories,
r);
// Torch indices are 1-based
dest[curDist * totalSamples + sample] = choice;
// Without replacement, so update the original probability so it
// is not considered a second time
origDist[curDist * categories + choice] = ScalarConvert<int, T>::to(0);
}
}
}
template <typename T>
__global__ void
aliasMultinomialSetup(int64_t *J, T*q, int64_t inputsize, int64_t * smaller, int64_t *larger, int small_c, int large_c) {
T one = ScalarConvert<int64_t, T>::to(1);
// Loop through and create little binary mixtures that
// appropriately allocate the larger outcomes over the
// overall uniform mixture.
int64_t large = 0;
int64_t small = 0;
while (small_c > 0 && large_c > 0) {
large = larger[large_c-1];
small = smaller[small_c-1];
J[small] = large;
T q_sum = THCNumerics<T>::add(q[large], q[small]);
q[large] = THCNumerics<T>::sub(q_sum, one);
if (THCNumerics<T>::lt(q[large], one)) {
smaller[small_c-1] = large;
large_c -= 1;
} else {
larger[large_c-1] = large;
small_c -= 1;
}
}
}
#endif // THC_TENSOR_RANDOM_CUH