forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcommon_cuda.py
34 lines (27 loc) · 1.28 KB
/
common_cuda.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
r"""This file is allowed to initialize CUDA context when imported."""
import torch
import torch.cuda
from common_utils import TEST_WITH_ROCM, TEST_NUMBA
TEST_CUDA = torch.cuda.is_available()
TEST_MULTIGPU = TEST_CUDA and torch.cuda.device_count() >= 2
CUDA_DEVICE = TEST_CUDA and torch.device("cuda:0")
# note: if ROCm is targeted, TEST_CUDNN is code for TEST_MIOPEN
TEST_CUDNN = TEST_CUDA and (TEST_WITH_ROCM or torch.backends.cudnn.is_acceptable(torch.tensor(1., device=CUDA_DEVICE)))
TEST_CUDNN_VERSION = torch.backends.cudnn.version() if TEST_CUDNN else 0
if TEST_NUMBA:
import numba.cuda
TEST_NUMBA_CUDA = numba.cuda.is_available()
else:
TEST_NUMBA_CUDA = False
# Used below in `initialize_cuda_context_rng` to ensure that CUDA context and
# RNG have been initialized.
__cuda_ctx_rng_initialized = False
# after this call, CUDA context and RNG must have been initialized on each GPU
def initialize_cuda_context_rng():
global __cuda_ctx_rng_initialized
assert TEST_CUDA, 'CUDA must be available when calling initialize_cuda_context_rng'
if not __cuda_ctx_rng_initialized:
# initialize cuda context and rng for memory tests
for i in range(torch.cuda.device_count()):
torch.randn(1, device="cuda:{}".format(i))
__cuda_ctx_rng_initialized = True