forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquasirandom.py
125 lines (103 loc) · 4.94 KB
/
quasirandom.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import torch
class SobolEngine(object):
r"""
The :class:`torch.quasirandom.SobolEngine` is an engine for generating
(scrambled) Sobol sequences. Sobol sequences are an example of low
discrepancy quasi-random sequences.
This implementation of an engine for Sobol sequences is capable of
sampling sequences up to a maximum dimension of 1111. It uses direction
numbers to generate these sequences, and these numbers have been adapted
from `here <http://web.maths.unsw.edu.au/~fkuo/sobol/joe-kuo-old.1111>`_.
References:
- Art B. Owen. Scrambling Sobol and Niederreiter-Xing points.
Journal of Complexity, 14(4):466-489, December 1998.
- I. M. Sobol. The distribution of points in a cube and the accurate
evaluation of integrals.
Zh. Vychisl. Mat. i Mat. Phys., 7:784-802, 1967.
Args:
dimension (Int): The dimensionality of the sequence to be drawn
scramble (bool, optional): Setting this to ``True`` will produce
scrambled Sobol sequences. Scrambling is
capable of producing better Sobol
sequences. Default: ``False``.
seed (Int, optional): This is the seed for the scrambling. The seed
of the random number generator is set to this,
if specified. Otherwise, it uses a random seed.
Default: ``None``
Examples::
>>> soboleng = torch.quasirandom.SobolEngine(dimension=5)
>>> soboleng.draw(3)
tensor([[0.5000, 0.5000, 0.5000, 0.5000, 0.5000],
[0.7500, 0.2500, 0.7500, 0.2500, 0.7500],
[0.2500, 0.7500, 0.2500, 0.7500, 0.2500]])
"""
MAXBIT = 30
MAXDIM = 1111
def __init__(self, dimension, scramble=False, seed=None):
if dimension > self.MAXDIM or dimension < 1:
raise ValueError("Supported range of dimensionality "
"for SobolEngine is [1, {}]".format(self.MAXDIM))
self.seed = seed
self.scramble = scramble
self.dimension = dimension
self.sobolstate = torch.zeros(dimension, self.MAXBIT, dtype=torch.long)
torch._sobol_engine_initialize_state_(self.sobolstate, self.dimension)
if self.scramble:
g = torch.Generator()
if self.seed is not None:
g.manual_seed(self.seed)
else:
g.seed()
self.shift = torch.mv(torch.randint(2, (self.dimension, self.MAXBIT), generator=g),
torch.pow(2, torch.arange(0, self.MAXBIT)))
ltm = torch.randint(2, (self.dimension, self.MAXBIT, self.MAXBIT), generator=g).tril()
torch._sobol_engine_scramble_(self.sobolstate, ltm, self.dimension)
else:
self.shift = torch.zeros(self.dimension, dtype=torch.long)
self.quasi = self.shift.clone()
self.num_generated = 0
def draw(self, n=1, out=None, dtype=torch.float32):
r"""
Function to draw a sequence of :attr:`n` points from a Sobol sequence.
Note that the samples are dependent on the previous samples. The size
of the result is :math:`(n, dimension)`.
Args:
n (Int, optional): The length of sequence of points to draw.
Default: 1
out (Tensor, optional): The output tensor
dtype (:class:`torch.dtype`, optional): the desired data type of the
returned tensor.
Default: ``torch.float32``
"""
result, self.quasi = torch._sobol_engine_draw(self.quasi, n, self.sobolstate,
self.dimension, self.num_generated, dtype=dtype)
self.num_generated += n
if out is not None:
out.resize_as_(result).copy_(result)
return out
return result
def reset(self):
r"""
Function to reset the ``SobolEngine`` to base state.
"""
self.quasi.copy_(self.shift)
self.num_generated = 0
return self
def fast_forward(self, n):
r"""
Function to fast-forward the state of the ``SobolEngine`` by
:attr:`n` steps. This is equivalent to drawing :attr:`n` samples
without using the samples.
Args:
n (Int): The number of steps to fast-forward by.
"""
torch._sobol_engine_ff_(self.quasi, n, self.sobolstate, self.dimension, self.num_generated)
self.num_generated += n
return self
def __repr__(self):
fmt_string = ['dimension={}'.format(self.dimension)]
if self.scramble:
fmt_string += ['scramble=True']
if self.seed is not None:
fmt_string += ['seed={}'.format(self.seed)]
return self.__class__.__name__ + '(' + ', '.join(fmt_string) + ')'