forked from POSTECH-IMLAB/LaneSegmentationNetwork
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path__init__.py
440 lines (342 loc) · 15.4 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
import tensorflow as tf
from network.lane_segmentator import Segmentator
from utils import preprocessing
from tensorflow.python import debug as tf_debug
import shutil
flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_integer('num_gpu', 2,
'Number of GPUs to use.')
flags.DEFINE_string('base_architecture', 'resnet_v2_50',
'The architecture of base Resnet building block.')
flags.DEFINE_string('pre_trained_model',
'./init_checkpoints/' + FLAGS.base_architecture + '/' + FLAGS.base_architecture + '.ckpt',
'The architecture of base Resnet building block.')
flags.DEFINE_string('model_dir', './model',
'Base directory for the model')
flags.DEFINE_string('train_data', './dataset_lane/lane_train.tfrecord',
'Tensorflow record file for training.')
flags.DEFINE_string('test_data', './dataset_lane/lane_test.tfrecord',
'Tensorflow record file for testing')
flags.DEFINE_boolean('clean_model_dir', False,
'Whether to clean up the model directory if present.')
flags.DEFINE_integer('train_epochs', 50,
'Number of training epochs.')
flags.DEFINE_integer('epochs_per_eval', 5,
'The number of training epochs to run between evaluations.')
flags.DEFINE_integer('batch_size', 8,
'Size of batch.')
flags.DEFINE_integer('max_iter', 32000,
'Number of maximum iteration used for "poly" learning rate policy.')
flags.DEFINE_integer('initial_global_step', 0,
'Initial global step for controlling learning rate when fine-tuning model.')
flags.DEFINE_integer('output_stride', 16,
'Output stride for DeepLab v3. Currently 8 or 16 is supported.')
flags.DEFINE_float('initial_learning_rate', 0.007,
'Initial learning rate for the optimizer.')
flags.DEFINE_float('end_learning_rate', 0,
'End learning rate for the optimizer.')
flags.DEFINE_float('power', 0.9,
'Parameter for polynomial learning rate policy.')
flags.DEFINE_float('momentum', 0.9,
'Parameter for momentum optimizer.')
flags.DEFINE_float('weight_decay', 0.0005,
'The weight decay to use for regularizing the model.')
flags.DEFINE_boolean('fine_tune_batch_norm', True,
'Whether fine tune parameters of batch normalization.')
flags.DEFINE_float('batch_norm_decay', 0.9997,
'Batch normalization decay rate.')
flags.DEFINE_boolean('debug', False,
'Whether to use debugger to track down bad values during training.')
flags.DEFINE_integer('num_classes', 2,
'Number of classes to predict.')
flags.DEFINE_integer('input_height', 720,
'Input images height.')
flags.DEFINE_integer('input_width', 1080,
'Input images width.')
flags.DEFINE_integer('input_depth', 3,
'Input images depth.')
flags.DEFINE_float('min_scale', 0.5,
'Minimum scale for multi scale input.')
flags.DEFINE_float('max_scale', 2.0,
'Maximum scale for multi scale input.')
flags.DEFINE_integer('ignore_label', 255,
'Maximum scale for multi scale input.')
_PROB_OF_FLIP = 0.5
_MEAN_RGB = [123.15, 115.90, 103.06]
def get_filenames(is_training):
"""Return a list of filenames.
Args:
is_training: A boolean denoting whether the input is for training.
data_dir: path to the the directory containing the input data.
Returns:
A list of file names.
"""
if is_training:
return [FLAGS.train_data]
else:
return [FLAGS.test_data]
def parse_record(raw_record):
"""Parse PASCAL image and label from a tf record."""
keys_to_features = {
'height':
tf.FixedLenFeature((), tf.int64),
'width':
tf.FixedLenFeature((), tf.int64),
'image/raw':
tf.FixedLenFeature((), tf.string, default_value=''),
'label/raw':
tf.FixedLenFeature((), tf.string, default_value='')
}
parsed = tf.parse_single_example(raw_record, keys_to_features)
def reshape_rgb(tensor):
return tf.reshape(tensor, [tf.cast(parsed['height'], tf.int32), tf.cast(parsed['width'], tf.int32), 3])
def reshape_gray(tensor):
return tf.reshape(tensor, [tf.cast(parsed['height'], tf.int32), tf.cast(parsed['width'], tf.int32), 1])
image = tf.decode_raw(parsed['image/raw'], tf.uint8)
image = tf.cast(image, tf.float32)
image = reshape_rgb(image)
label = tf.decode_raw(parsed['label/raw'], tf.uint8)
label = tf.cast(label, tf.float32)
label = reshape_gray(label)
return image, label
def preprocess_image_and_label(image,
label,
crop_height,
crop_width,
min_resize_value=None,
max_resize_value=None,
resize_factor=None,
min_scale_factor=1.,
max_scale_factor=1.,
scale_factor_step_size=0.,
ignore_label=255,
is_training=True,
model_variant=None):
"""
Preprocesses the image and label.
Args:
image: Input image.
label: Ground truth annotation label.
crop_height: The height value used to crop the image and label.
crop_width: The width value used to crop the image and label.
min_resize_value: Desired size of the smaller image side.
max_resize_value: Maximum allowed size of the larger image side.
resize_factor: Resized dimensions are multiple of factor plus one.
min_scale_factor: Minimum scale factor value.
max_scale_factor: Maximum scale factor value.
scale_factor_step_size: The step size from min scale factor to max scale
factor. The input is randomly scaled based on the value of
(min_scale_factor, max_scale_factor, scale_factor_step_size).
ignore_label: The label value which will be ignored for training and
evaluation.
is_training: If the preprocessing is used for training or not.
model_variant: Model variant (string) for choosing how to mean-subtract the
images. See feature_extractor.network_map for supported model variants.
Returns:
original_image: Original image (could be resized).
processed_image: Preprocessed image.
label: Preprocessed ground truth segmentation label.
Raises:
ValueError: Ground truth label not provided during training.
"""
if is_training and label is None:
raise ValueError('During training, label must be provided.')
if model_variant is None:
tf.logging.warning('Default mean-subtraction is performed. Please specify '
'a model_variant. See feature_extractor.network_map for '
'supported model variants.')
# Keep reference to original image.
original_image = image
processed_image = tf.cast(image, tf.float32)
if label is not None:
label = tf.cast(label, tf.int32)
# Resize image and label to the desired range.
if min_resize_value is not None or max_resize_value is not None:
[processed_image, label] = (
preprocessing.resize_to_range(
image=processed_image,
label=label,
min_size=min_resize_value,
max_size=max_resize_value,
factor=resize_factor,
align_corners=True))
# The `original_image` becomes the resized image.
original_image = tf.identity(processed_image)
# Data augmentation by randomly scaling the inputs.
if is_training:
scale = preprocessing.get_random_scale(
min_scale_factor, max_scale_factor, scale_factor_step_size)
processed_image, label = preprocessing.randomly_scale_image_and_label(
processed_image, label, scale)
processed_image.set_shape([None, None, 3])
# Pad image and label to have dimensions >= [crop_height, crop_width]
image_shape = tf.shape(processed_image)
image_height = image_shape[0]
image_width = image_shape[1]
target_height = image_height + tf.maximum(crop_height - image_height, 0)
target_width = image_width + tf.maximum(crop_width - image_width, 0)
# Pad image with mean pixel value.
mean_pixel = tf.reshape(_MEAN_RGB, [1, 1, 3])
processed_image = preprocessing.pad_to_bounding_box(
processed_image, 0, 0, target_height, target_width, mean_pixel)
if label is not None:
label = preprocessing.pad_to_bounding_box(
label, 0, 0, target_height, target_width, ignore_label)
# Randomly crop the image and label.
if is_training and label is not None:
processed_image, label = preprocessing.random_crop(
[processed_image, label], crop_height, crop_width)
processed_image.set_shape([crop_height, crop_width, 3])
if label is not None:
label.set_shape([crop_height, crop_width, 1])
if is_training:
# Randomly left-right flip the image and label.
processed_image, label, _ = preprocessing.flip_dim(
[processed_image, label], _PROB_OF_FLIP, dim=1)
return processed_image, label
def input_fn(is_training, batch_size, num_epochs=1):
"""Input_fn using the tf.data input pipeline for CIFAR-10 dataset.
Args:
is_training: A boolean denoting whether the input is for training.
data_dir: The directory containing the input data.
batch_size: The number of samples per batch.
num_epochs: The number of epochs to repeat the dataset.
Returns:
A tuple of images and labels.
"""
dataset = tf.data.Dataset.from_tensor_slices(get_filenames(is_training))
dataset = dataset.flat_map(tf.data.TFRecordDataset)
if is_training:
# When choosing shuffle buffer sizes, larger sizes result in better
# randomness, while smaller sizes have better performance.
# is a relatively small dataset, we choose to shuffle the full epoch.
dataset = dataset.shuffle(buffer_size=batch_size * 50)
dataset = dataset.map(parse_record)
dataset = dataset.map(
lambda image, label: preprocess_image_and_label(
image, label, FLAGS.input_height, FLAGS.input_width,
min_scale_factor=FLAGS.min_scale,
max_scale_factor=FLAGS.max_scale,
scale_factor_step_size=0.25,
is_training=is_training),
num_parallel_calls=FLAGS.num_gpu
)
# We call repeat after shuffling, rather than before, to prevent separate
# epochs from blending together.
dataset = dataset.repeat(num_epochs)
dataset = dataset.batch(batch_size)
dataset = dataset.prefetch(batch_size)
iterator = dataset.make_one_shot_iterator()
images, labels = iterator.get_next()
return images, labels
def input_fn_for_eval(batch_size):
"""Input_fn using the tf.data input pipeline for CIFAR-10 dataset.
Args:
data_dir: The directory containing the input data.
scale: Rescale image and label by factor.
flip: Whether flip image and label or not.
Returns:
A tuple of images and labels.
"""
is_training = False
dataset = tf.data.Dataset.from_tensor_slices(get_filenames(is_training))
dataset = dataset.flat_map(tf.data.TFRecordDataset)
dataset = dataset.map(parse_record)
dataset = dataset.map(
lambda image, label: preprocess_image_and_label(
image, label, FLAGS.input_height, FLAGS.input_width,
is_training=is_training),
num_parallel_calls=FLAGS.num_gpu
)
# We call repeat after shuffling, rather than before, to prevent separate
# epochs from blending together.
dataset = dataset.batch(batch_size)
dataset = dataset.prefetch(batch_size * 2)
iterator = dataset.make_one_shot_iterator()
images, labels = iterator.get_next()
return tf.concat([images] * 2, axis=0), tf.concat([labels] * 2, axis=0)
def main(argv):
# Set GPU to use
# os.environ['CUDA_VISIBLE_DEVICES'] = '0'
# Remove tensorflow basic logs 3: remove all
# os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
# Using the Winograd non-fused algorithms provides a small performance boost.
os.environ['TF_ENABLE_WINOGRAD_NONFUSED'] = '1'
if FLAGS.clean_model_dir:
shutil.rmtree(FLAGS.model_dir, ignore_errors=True)
print(FLAGS)
# Set up network
segmentator = Segmentator(
params={
'batch_norm_decay': FLAGS.batch_norm_decay,
'base_architecture': FLAGS.base_architecture,
'output_stride': FLAGS.output_stride,
'pre_trained_model': FLAGS.pre_trained_model,
'num_classes': FLAGS.num_classes,
'batch_size': int(FLAGS.batch_size / FLAGS.num_gpu),
'weight_decay': FLAGS.weight_decay,
'initial_learning_rate': FLAGS.initial_learning_rate,
'initial_global_step': FLAGS.initial_global_step,
'max_iter': FLAGS.max_iter,
'end_learning_rate': FLAGS.end_learning_rate,
'power': FLAGS.power,
'momentum': FLAGS.momentum,
'fine_tune_batch_norm': FLAGS.fine_tune_batch_norm,
'ignore_label': FLAGS.ignore_label
}
)
run_config = tf.estimator.RunConfig(
model_dir=FLAGS.model_dir,
save_summary_steps=10,
log_step_count_steps=10,
save_checkpoints_secs=10000
)
estimator = tf.estimator.Estimator(
model_fn=segmentator.model_fn if FLAGS.num_gpu == 1 else
tf.contrib.estimator.replicate_model_fn(segmentator.model_fn),
config=run_config
)
for _ in range(FLAGS.train_epochs // FLAGS.epochs_per_eval):
tensors_to_log = {
'learning_rate': 'Summary/learning_rate',
'cross_entropy': 'Summary/loss',
'train_px_accuracy': 'Summary/train_px_accuracy',
'train_mean_iou': 'Summary/train_mean_iou',
}
logging_hook = tf.train.LoggingTensorHook(
tensors=tensors_to_log, every_n_iter=1)
train_hooks = [logging_hook]
eval_hooks = None
if FLAGS.debug:
debug_hook = tf_debug.LocalCLIDebugHook()
train_hooks.append(debug_hook)
eval_hooks = [debug_hook]
tf.logging.info("Start training.")
estimator.train(
input_fn=lambda: input_fn(True, FLAGS.batch_size, FLAGS.epochs_per_eval),
hooks=train_hooks,
# steps=1 # For debug
)
tf.logging.info("Start evaluation.")
eval_results = estimator.evaluate(
input_fn=lambda: input_fn_for_eval(FLAGS.batch_size),
hooks=eval_hooks,
# steps=1 # For debug
)
print(eval_results)
scales = [0.5, 0.75, 1.0, 1.25, 1.5, 1.75]
for s in scales:
eval_results = estimator.evaluate(
input_fn=lambda: input_fn_for_eval(FLAGS.batch_size * 2),
# steps=1 # For debug
)
print('Scale:', s, ':', eval_results)
if __name__ == '__main__':
tf.logging.set_verbosity(tf.logging.INFO)
tf.app.run(main=main)