forked from pytorch/executorch
-
Notifications
You must be signed in to change notification settings - Fork 0
445 lines (395 loc) · 17.2 KB
/
trunk.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
name: trunk
on:
push:
branches:
- main
- release/*
tags:
- ciflow/trunk/*
pull_request:
paths:
- .ci/docker/ci_commit_pins/pytorch.txt
- .ci/scripts/**
workflow_dispatch:
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.sha }}-${{ github.event_name == 'workflow_dispatch' }}-${{ github.event_name == 'schedule' }}
cancel-in-progress: true
jobs:
gather-models:
runs-on: ubuntu-22.04
outputs:
models: ${{ steps.gather-models.outputs.models }}
steps:
- uses: actions/checkout@v3
with:
submodules: 'false'
- uses: actions/setup-python@v4
with:
python-version: '3.10'
- name: Extract the list of models to test
id: gather-models
run: |
set -eux
PYTHONPATH="${PWD}" python .ci/scripts/gather_test_models.py --target-os macos --event "${GITHUB_EVENT_NAME}"
test-models-macos:
name: test-models-macos
uses: pytorch/test-infra/.github/workflows/macos_job.yml@main
needs: gather-models
strategy:
matrix: ${{ fromJSON(needs.gather-models.outputs.models) }}
fail-fast: false
with:
runner: ${{ matrix.runner }}
python-version: '3.11'
submodules: 'true'
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
timeout: ${{ matrix.timeout }}
script: |
MODEL_NAME=${{ matrix.model }}
BUILD_TOOL=${{ matrix.build-tool }}
BACKEND=${{ matrix.backend }}
DEMO_BACKEND_DELEGATION=${{ matrix.demo_backend_delegation }}
bash .ci/scripts/setup-conda.sh
# Setup MacOS dependencies as there is no Docker support on MacOS atm
PYTHON_EXECUTABLE=python ${CONDA_RUN} bash .ci/scripts/setup-macos.sh "${BUILD_TOOL}"
# Build and test xecutorch
PYTHON_EXECUTABLE=python ${CONDA_RUN} bash .ci/scripts/test_model.sh "${MODEL_NAME}" "${BUILD_TOOL}" "${BACKEND}" "${DEMO_BACKEND_DELEGATION}"
test-custom-ops-macos:
name: test-custom-ops-macos
uses: pytorch/test-infra/.github/workflows/macos_job.yml@main
strategy:
matrix:
include:
- build-tool: cmake
fail-fast: false
with:
runner: macos-m1-stable
python-version: '3.11'
submodules: 'true'
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
script: |
BUILD_TOOL=${{ matrix.build-tool }}
bash .ci/scripts/setup-conda.sh
# Setup MacOS dependencies as there is no Docker support on MacOS atm
PYTHON_EXECUTABLE=python ${CONDA_RUN} bash .ci/scripts/setup-macos.sh "${BUILD_TOOL}"
# Build and test custom ops
PYTHON_EXECUTABLE=python ${CONDA_RUN} bash examples/portable/custom_ops/test_custom_ops.sh "${BUILD_TOOL}"
test-selective-build-macos:
name: test-selective-build-macos
uses: pytorch/test-infra/.github/workflows/macos_job.yml@main
strategy:
matrix:
include:
- build-tool: cmake
fail-fast: false
with:
runner: macos-m1-stable
python-version: '3.11'
submodules: 'true'
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
script: |
BUILD_TOOL=${{ matrix.build-tool }}
bash .ci/scripts/setup-conda.sh
# Setup MacOS dependencies as there is no Docker support on MacOS atm
PYTHON_EXECUTABLE=python ${CONDA_RUN} bash .ci/scripts/setup-macos.sh "${BUILD_TOOL}"
# Build and test selective build
PYTHON_EXECUTABLE=python ${CONDA_RUN} bash examples/selective_build/test_selective_build.sh "${BUILD_TOOL}"
test-demo-backend-delegation:
name: test-demo-backend-delegation
uses: pytorch/test-infra/.github/workflows/linux_job.yml@main
strategy:
matrix:
include:
- build-tool: buck2
- build-tool: cmake
fail-fast: false
with:
runner: linux.2xlarge
docker-image: executorch-ubuntu-22.04-clang12
submodules: 'true'
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
script: |
# The generic Linux job chooses to use base env, not the one setup by the image
CONDA_ENV=$(conda env list --json | jq -r ".envs | .[-1]")
conda activate "${CONDA_ENV}"
BUILD_TOOL=${{ matrix.build-tool }}
PYTHON_EXECUTABLE=python bash .ci/scripts/setup-linux.sh "${BUILD_TOOL}"
# Test selective build
PYTHON_EXECUTABLE=python bash examples/portable/scripts/test_demo_backend_delegation.sh "${BUILD_TOOL}"
test-arm-backend-delegation:
name: test-arm-backend-delegation
uses: pytorch/test-infra/.github/workflows/linux_job.yml@main
with:
runner: linux.2xlarge
docker-image: executorch-ubuntu-22.04-arm-sdk
submodules: 'true'
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
timeout: 90
script: |
# The generic Linux job chooses to use base env, not the one setup by the image
CONDA_ENV=$(conda env list --json | jq -r ".envs | .[-1]")
conda activate "${CONDA_ENV}"
source .ci/scripts/utils.sh
install_executorch
install_arm
# Increase number of files user can monitor to bypass buck failures.
# Hopefully this is high enough for this setup.
sudo sysctl fs.inotify.max_user_watches=1048576 # 1024 * 1024
# Test ethos-u delegate examples with run.sh
PYTHON_EXECUTABLE=python bash examples/arm/run.sh examples/arm/ethos-u-scratch/
test-arm-reference-delegation:
name: test-arm-reference-delegation
uses: pytorch/test-infra/.github/workflows/linux_job.yml@main
with:
runner: linux.2xlarge
docker-image: executorch-ubuntu-22.04-arm-sdk
submodules: 'true'
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
timeout: 90
script: |
# The generic Linux job chooses to use base env, not the one setup by the image
CONDA_ENV=$(conda env list --json | jq -r ".envs | .[-1]")
conda activate "${CONDA_ENV}"
source .ci/scripts/utils.sh
install_executorch
install_arm
# Run arm unit tests
pytest -c /dev/null -v -n auto --cov=./ --cov-report=xml backends/arm/test
test-coreml-delegate:
name: test-coreml-delegate
uses: pytorch/test-infra/.github/workflows/macos_job.yml@main
with:
runner: macos-13-xlarge
python-version: '3.11'
submodules: 'true'
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
timeout: 90
script: |
BUILD_TOOL=cmake
bash .ci/scripts/setup-conda.sh
# Setup MacOS dependencies as there is no Docker support on MacOS atm
GITHUB_RUNNER=1 PYTHON_EXECUTABLE=python ${CONDA_RUN} bash .ci/scripts/setup-macos.sh "${BUILD_TOOL}"
# Build and test coreml delegate
PYTHON_EXECUTABLE=python ${CONDA_RUN} bash backends/apple/coreml/scripts/build_all.sh
test-pybind-build-macos:
name: test-pybind-build-macos
uses: pytorch/test-infra/.github/workflows/macos_job.yml@main
strategy:
matrix:
include:
- build-tool: cmake
fail-fast: false
with:
runner: macos-m1-stable
python-version: '3.11'
submodules: 'true'
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
timeout: 180
script: |
bash .ci/scripts/setup-conda.sh
# build module for executorch.extension.pybindings.portable_lib
BUILD_TOOL=${{ matrix.build-tool }}
EXECUTORCH_BUILD_PYBIND=ON PYTHON_EXECUTABLE=python ${CONDA_RUN} bash .ci/scripts/setup-macos.sh "${BUILD_TOOL}"
# see if we can import the module successfully
${CONDA_RUN} python -c "from executorch.extension.pybindings import portable_lib; print('success!')"
test-llama-runner-macos:
name: test-llama-runner-mac
uses: pytorch/test-infra/.github/workflows/macos_job.yml@main
strategy:
matrix:
dtype: [fp32]
mode: [portable, xnnpack+kv+custom, mps, coreml]
include:
- dtype: bf16
mode: portable
- dtype: bf16
mode: custom
fail-fast: false
with:
runner: macos-m1-stable
python-version: '3.11'
submodules: 'true'
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
timeout: 900
script: |
DTYPE=${{ matrix.dtype }}
MODE=${{ matrix.mode }}
bash .ci/scripts/setup-conda.sh
# Setup executorch
PYTHON_EXECUTABLE=python ${CONDA_RUN} bash .ci/scripts/setup-macos.sh cmake
if [[ "${MODE}" == "mps" ]]; then
# Install mps delegate
PYTHON_EXECUTABLE=python ${CONDA_RUN} bash backends/apple/mps/install_requirements.sh
echo "Finishing installing mps."
elif [[ "${MODE}" == "coreml" ]]; then
# Install coreml delegate
PYTHON_EXECUTABLE=python ${CONDA_RUN} bash backends/apple/coreml/scripts/install_requirements.sh
echo "Finishing installing coreml."
fi
# Install requirements for export_llama
PYTHON_EXECUTABLE=python ${CONDA_RUN} bash examples/models/llama/install_requirements.sh
# Test llama2
PYTHON_EXECUTABLE=python ${CONDA_RUN} bash .ci/scripts/test_llama.sh stories110M cmake "${DTYPE}" "${MODE}"
# # TODO(jackzhxng): Runner consistently runs out of memory before test finishes. Try to find a more powerful runner.
# test-llava-runner-macos:
# name: test-llava-runner-macos
# uses: pytorch/test-infra/.github/workflows/macos_job.yml@main
# strategy:
# fail-fast: false
# with:
# runner: macos-14-xlarge
# python-version: '3.11'
# submodules: 'true'
# ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
# timeout: 900
# script: |
# BUILD_TOOL=cmake
# bash .ci/scripts/setup-conda.sh
# # Setup MacOS dependencies as there is no Docker support on MacOS atm
# GITHUB_RUNNER=1 PYTHON_EXECUTABLE=python ${CONDA_RUN} bash .ci/scripts/setup-macos.sh "${BUILD_TOOL}"
# # install Llava requirements
# ${CONDA_RUN} bash examples/models/llama/install_requirements.sh
# ${CONDA_RUN} bash examples/models/llava/install_requirements.sh
# # run python unittest
# ${CONDA_RUN} python -m unittest examples.models.llava.test.test_llava
# # run e2e (export, tokenizer and runner)
# PYTHON_EXECUTABLE=python ${CONDA_RUN} bash .ci/scripts/test_llava.sh Release
test-qnn-model:
name: test-qnn-model
uses: pytorch/test-infra/.github/workflows/linux_job.yml@main
strategy:
matrix:
dtype: [fp32]
model: [dl3, mv3, mv2, ic4, ic3, vit]
fail-fast: false
with:
runner: linux.2xlarge
docker-image: executorch-ubuntu-22.04-clang12-android
submodules: 'true'
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
timeout: 900
script: |
# The generic Linux job chooses to use base env, not the one setup by the image
CONDA_ENV=$(conda env list --json | jq -r ".envs | .[-1]")
conda activate "${CONDA_ENV}"
PYTHON_EXECUTABLE=python bash .ci/scripts/setup-linux.sh cmake
PYTHON_EXECUTABLE=python bash .ci/scripts/setup-qnn-deps.sh
PYTHON_EXECUTABLE=python bash .ci/scripts/build-qnn-sdk.sh
PYTHON_EXECUTABLE=python bash .ci/scripts/test_model.sh ${{ matrix.model }} "cmake" "qnn"
test-apple-model:
name: test-apple-model
uses: pytorch/test-infra/.github/workflows/macos_job.yml@main
strategy:
fail-fast: false
with:
runner: macos-m1-stable
python-version: '3.11'
submodules: 'true'
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
timeout: 90
script: |
BUILD_TOOL=cmake
bash .ci/scripts/setup-conda.sh
# Setup MacOS dependencies as there is no Docker support on MacOS atm
PYTHON_EXECUTABLE=python ${CONDA_RUN} bash .ci/scripts/setup-macos.sh "${BUILD_TOOL}"
PYTHON_EXECUTABLE=python ${CONDA_RUN} bash backends/apple/coreml/scripts/install_requirements.sh
echo "Finishing installing coreml."
PYTHON_EXECUTABLE=python ${CONDA_RUN} bash backends/apple/mps/install_requirements.sh
echo "Finishing installing mps."
# Build and test coreml model
MODELS=(mv3 ic4 resnet50 edsr mobilebert w2l)
for MODEL_NAME in "${MODELS[@]}"; do
echo "::group::Exporting coreml model: $MODEL_NAME"
PYTHON_EXECUTABLE=python ${CONDA_RUN} bash .ci/scripts/test_model.sh "${MODEL_NAME}" "${BUILD_TOOL}" "coreml"
echo "::endgroup::"
echo "::group::Exporting mps model: $MODEL_NAME"
PYTHON_EXECUTABLE=python ${CONDA_RUN} bash .ci/scripts/test_model.sh "${MODEL_NAME}" "${BUILD_TOOL}" "mps"
echo "::endgroup::"
done
test-huggingface-transformers:
name: test-huggingface-transformers
uses: pytorch/test-infra/.github/workflows/linux_job.yml@main
secrets: inherit
strategy:
matrix:
hf_model_repo: [google/gemma-2b]
fail-fast: false
with:
secrets-env: EXECUTORCH_HF_TOKEN
runner: linux.12xlarge
docker-image: executorch-ubuntu-22.04-clang12
submodules: 'true'
ref: ${{ github.event_name == 'pull_request' && github.event.pull_request.head.sha || github.sha }}
timeout: 90
script: |
echo "::group::Set up ExecuTorch"
# The generic Linux job chooses to use base env, not the one setup by the image
CONDA_ENV=$(conda env list --json | jq -r ".envs | .[-1]")
conda activate "${CONDA_ENV}"
PYTHON_EXECUTABLE=python bash .ci/scripts/setup-linux.sh cmake
echo "Installing libexecutorch.a, libextension_module.so, libportable_ops_lib.a"
rm -rf cmake-out
cmake \
-DCMAKE_INSTALL_PREFIX=cmake-out \
-DCMAKE_BUILD_TYPE=Release \
-DEXECUTORCH_BUILD_EXTENSION_DATA_LOADER=ON \
-DEXECUTORCH_BUILD_EXTENSION_MODULE=ON \
-DEXECUTORCH_BUILD_EXTENSION_TENSOR=ON \
-DEXECUTORCH_BUILD_KERNELS_CUSTOM=ON \
-DEXECUTORCH_BUILD_KERNELS_OPTIMIZED=ON \
-DEXECUTORCH_BUILD_KERNELS_QUANTIZED=ON \
-DEXECUTORCH_BUILD_XNNPACK=ON \
-DPYTHON_EXECUTABLE=python \
-Bcmake-out .
cmake --build cmake-out -j9 --target install --config Release
echo "Build llama runner"
dir="examples/models/llama"
cmake \
-DCMAKE_INSTALL_PREFIX=cmake-out \
-DCMAKE_BUILD_TYPE=Release \
-DEXECUTORCH_BUILD_KERNELS_CUSTOM=ON \
-DEXECUTORCH_BUILD_KERNELS_OPTIMIZED=ON \
-DEXECUTORCH_BUILD_KERNELS_QUANTIZED=ON \
-DEXECUTORCH_BUILD_XNNPACK=ON \
-DPYTHON_EXECUTABLE=python \
-Bcmake-out/${dir} \
${dir}
cmake --build cmake-out/${dir} -j9 --config Release
echo "::endgroup::"
echo "::group::Set up HuggingFace Dependencies"
if [ -z "$SECRET_EXECUTORCH_HF_TOKEN" ]; then
echo "::error::SECRET_EXECUTORCH_HF_TOKEN is empty. For security reason secrets won't be accessible on forked PRs. Please make sure you submit a non-forked PR."
exit 1
fi
pip install -U "huggingface_hub[cli]"
huggingface-cli login --token $SECRET_EXECUTORCH_HF_TOKEN
pip install accelerate sentencepiece
# TODO(guangyang): Switch to use released transformers library after all required patches are included
pip install "git+https://github.com/huggingface/transformers.git@6cc4dfe3f1e8d421c6d6351388e06e9b123cbfe1"
pip list
echo "::endgroup::"
echo "::group::Export to ExecuTorch"
TOKENIZER_FILE=tokenizer.model
TOKENIZER_BIN_FILE=tokenizer.bin
ET_MODEL_NAME=et_model
# Fetch the file using a Python one-liner
DOWNLOADED_TOKENIZER_FILE_PATH=$(python -c "
from huggingface_hub import hf_hub_download
# Download the file from the Hugging Face Hub
downloaded_path = hf_hub_download(
repo_id='${{ matrix.hf_model_repo }}',
filename='${TOKENIZER_FILE}'
)
print(downloaded_path)
")
if [ -f "$DOWNLOADED_TOKENIZER_FILE_PATH" ]; then
echo "${TOKENIZER_FILE} downloaded successfully at: $DOWNLOADED_TOKENIZER_FILE_PATH"
python -m extension.llm.tokenizer.tokenizer -t $DOWNLOADED_TOKENIZER_FILE_PATH -o ./${TOKENIZER_BIN_FILE}
ls ./tokenizer.bin
else
echo "Failed to download ${TOKENIZER_FILE} from ${{ matrix.hf_model_repo }}."
exit 1
fi
python -m extension.export_util.export_hf_model -hfm=${{ matrix.hf_model_repo }} -o ${ET_MODEL_NAME}
cmake-out/examples/models/llama/llama_main --model_path=${ET_MODEL_NAME}.pte --tokenizer_path=${TOKENIZER_BIN_FILE} --prompt="My name is"
echo "::endgroup::"