forked from PDillis/stylegan3-fun
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdiscriminator_synthesis.py
585 lines (503 loc) · 28.6 KB
/
discriminator_synthesis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
import torch
from torch.autograd import Variable
from torchvision import transforms
import PIL
from PIL import Image
try:
import ffmpeg
except ImportError:
raise ImportError('ffmpeg-python not found! Install it via "pip install ffmpeg-python"')
import scipy.ndimage as nd
import numpy as np
import os
import click
from typing import Union, Tuple, Optional, List
from tqdm import tqdm
from torch_utils import gen_utils
import dnnlib
import legacy
from network_features import DiscriminatorFeatures
# ----------------------------------------------------------------------------
@click.group()
def main():
pass
# ----------------------------------------------------------------------------
def get_available_layers(max_resolution: int) -> List[str]:
"""Helper function to get the available layers given a max resolution (first block in the Discriminator)"""
max_res_log2 = int(np.log2(max_resolution))
block_resolutions = [2**i for i in range(max_res_log2, 2, -1)]
available_layers = ['from_rgb']
for block_res in block_resolutions:
# We don't add the skip layer, as it's the same as conv1 (due to in-place addition; could be changed)
available_layers.extend([f'b{block_res}_conv0', f'b{block_res}_conv1'])
# We also skip 'b4_mbstd', as it doesn't add any new information compared to b8_conv1
available_layers.extend(['b4_conv', 'fc', 'out'])
return available_layers
# ----------------------------------------------------------------------------
# DeepDream code; modified from Erik Linder-Norén's repository: https://github.com/eriklindernoren/PyTorch-Deep-Dream
def get_image(seed: int = 0,
image_noise: str = 'random',
starting_image: Union[str, os.PathLike] = None,
image_size: int = 1024,
convert_to_grayscale: bool = False) -> Tuple[PIL.Image.Image, str]:
"""Set the random seed (NumPy + PyTorch), as well as get an image from a path or generate a random one with the seed"""
torch.manual_seed(seed)
rnd = np.random.RandomState(seed)
# Load image or generate a random one if none is provided
if starting_image is not None:
image = Image.open(starting_image).convert('RGB').resize((image_size, image_size), Image.LANCZOS)
else:
if image_noise == 'random':
starting_image = f'random_image-seed_{seed}.jpg'
image = Image.fromarray(rnd.randint(0, 255, (image_size, image_size, 3), dtype='uint8'))
elif image_noise == 'perlin':
try:
# Graciously using Mathieu Duchesneau's implementation: https://github.com/duchesneaumathieu/pyperlin
from pyperlin import FractalPerlin2D
starting_image = f'perlin_image-seed_{seed}.jpg'
shape = (3, image_size, image_size)
resolutions = [(2**i, 2**i) for i in range(1, 6+1)] # for lacunarity = 2.0 # TODO: set as cli variable
factors = [0.5**i for i in range(6)] # for persistence = 0.5 TODO: set as cli variables
g_cuda = torch.Generator(device='cuda').manual_seed(seed)
rgb = FractalPerlin2D(shape, resolutions, factors, generator=g_cuda)().cpu().numpy()
rgb = (255 * (rgb + 1) / 2).astype(np.uint8) # [-1.0, 1.0] => [0, 255]
image = Image.fromarray(np.stack(rgb, axis=2), 'RGB')
except ImportError:
raise ImportError('pyperlin not found! Install it via "pip install pyperlin"')
if convert_to_grayscale:
image = image.convert('L').convert('RGB') # We do a little trolling to Pillow (so we have a 3-channel image)
return image, starting_image
def crop_resize_rotate(img: PIL.Image.Image,
crop_size: int = None,
new_size: int = None,
rotation_deg: float = None,
translate_x: float = 0.0,
translate_y: float = 0.0) -> PIL.Image.Image:
"""Center-crop the input image into a square of sides crop_size; can be resized to new_size; rotated rotation_deg counter-clockwise"""
# Center-crop the input image
if crop_size is not None:
w, h = img.size # Input image width and height
img = img.crop(box=((w - crop_size) // 2, # Left pixel coordinate
(h - crop_size) // 2, # Upper pixel coordinate
(w + crop_size) // 2, # Right pixel coordinate
(h + crop_size) // 2)) # Lower pixel coordinate
# Resize
if new_size is not None:
img = img.resize(size=(new_size, new_size), # Requested size of the image in pixels; (width, height)
resample=Image.LANCZOS) # Resampling filter
# Rotation and translation
if rotation_deg is not None:
img = img.rotate(angle=rotation_deg, # Angle to rotate image, counter-clockwise
resample=PIL.Image.BICUBIC, # Resampling filter; options: [PIL.Image.NEAREST | PIL.Image.BILINEAR | PIL.Image.BICUBIC]
expand=False, # If True, the whole rotated image will be shown
translate=(translate_x, translate_y), # Translate the image, from top-left corner (post-rotation)
fillcolor=(0, 0, 0)) # Black background
# TODO: tile the background
return img
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
preprocess = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean, std)])
def deprocess(image_np: torch.Tensor) -> np.ndarray:
image_np = image_np.squeeze().transpose(1, 2, 0)
image_np = image_np * std.reshape((1, 1, 3)) + mean.reshape((1, 1, 3))
# image_np = (image_np + 1.0) / 2.0
image_np = np.clip(image_np, 0.0, 1.0)
image_np = (255 * image_np).astype('uint8')
return image_np
def clip(image_tensor: torch.Tensor) -> torch.Tensor:
"""Clamp per channel"""
for c in range(3):
m, s = mean[c], std[c]
image_tensor[0, c] = torch.clamp(image_tensor[0, c], -m / s, (1 - m) / s)
return image_tensor
def dream(image: PIL.Image.Image,
model: torch.nn.Module,
layers: List[str],
normed: bool = False,
sqrt_normed: bool = False,
iterations: int = 20,
lr: float = 1e-2) -> np.ndarray:
""" Updates the image to maximize outputs for n iterations """
Tensor = torch.cuda.FloatTensor if torch.cuda.is_available() else torch.FloatTensor
image = Variable(Tensor(image), requires_grad=True)
for i in range(iterations):
model.zero_grad()
out = model.get_layers_features(image, layers=layers, normed=normed, sqrt_normed=sqrt_normed)
loss = sum(layer.norm() for layer in out) # More than one layer may be used
loss.backward()
avg_grad = np.abs(image.grad.data.cpu().numpy()).mean()
norm_lr = lr / avg_grad
image.data += norm_lr * image.grad.data
image.data = clip(image.data)
# image.data = torch.clamp(image.data, -1.0, 1.0)
image.grad.data.zero_()
return image.cpu().data.numpy()
def deep_dream(image: PIL.Image.Image,
model: torch.nn.Module,
model_resolution: int,
layers: List[str],
normed: bool,
sqrt_normed: bool,
iterations: int,
lr: float,
octave_scale: float,
num_octaves: int,
unzoom_octave: bool = False,
disable_inner_tqdm: bool = False) -> np.ndarray:
""" Main deep dream method """
# Center-crop and resize
image = crop_resize_rotate(img=image, crop_size=min(image.size), new_size=model_resolution)
# Preprocess image
image = preprocess(image)
# image = torch.from_numpy(np.array(image)).permute(-1, 0, 1) / 127.5 - 1.0 # alternative
image = image.unsqueeze(0).cpu().data.numpy()
# Extract image representations for each octave
octaves = [image]
for _ in range(num_octaves - 1):
# Alternatively, see if we get better results with: https://www.tensorflow.org/tutorials/generative/deepdream#taking_it_up_an_octave
octave = nd.zoom(octaves[-1], (1, 1, 1 / octave_scale, 1 / octave_scale), order=1)
# Necessary for StyleGAN's Discriminator, as it cannot handle any image size
if unzoom_octave:
octave = nd.zoom(octave, np.array(octaves[-1].shape) / np.array(octave.shape), order=1)
octaves.append(octave)
detail = np.zeros_like(octaves[-1])
for octave, octave_base in enumerate(tqdm(octaves[::-1], desc=f'Dreaming w/layers {"|".join(x for x in layers)}',
disable=disable_inner_tqdm)):
if octave > 0:
# Upsample detail to new octave dimension
detail = nd.zoom(detail, np.array(octave_base.shape) / np.array(detail.shape), order=1)
# Add deep dream detail from previous octave to new base
input_image = octave_base + detail
# Get new deep dream image
dreamed_image = dream(input_image, model, layers, normed, sqrt_normed, iterations, lr)
# Extract deep dream details
detail = dreamed_image - octave_base
return deprocess(dreamed_image)
# ----------------------------------------------------------------------------
@main.command(name='style-transfer')
def style_transfer_discriminator():
print('Coming soon!')
# Reference: https://pytorch.org/tutorials/advanced/neural_style_tutorial.html
# ----------------------------------------------------------------------------
@main.command(name='dream')
@click.pass_context
@click.option('--network', 'network_pkl', help='Network pickle filename', required=True)
@click.option('--cfg', type=click.Choice(['stylegan3-t', 'stylegan3-r', 'stylegan2']), help='Model base configuration', default=None)
# Synthesis options
@click.option('--seed', type=int, help='Random seed to use', default=0)
@click.option('--random-image-noise', '-noise', 'image_noise', type=click.Choice(['random', 'perlin']), default='random', show_default=True)
@click.option('--starting-image', type=str, help='Path to image to start from', default=None)
@click.option('--convert-to-grayscale', '-grayscale', is_flag=True, help='Add flag to grayscale the initial image')
@click.option('--class', 'class_idx', type=int, help='Class label (unconditional if not specified)', default=None)
@click.option('--lr', 'learning_rate', type=float, help='Learning rate', default=1e-2, show_default=True)
@click.option('--iterations', '-it', type=int, help='Number of gradient ascent steps per octave', default=20, show_default=True)
# Layer options
@click.option('--layers', type=str, help='Layers of the Discriminator to use as the features. If "all", will generate a dream image per available layer in the loaded model. If "use_all", will use all available layers.', default='b16_conv1', show_default=True)
@click.option('--normed', 'norm_model_layers', is_flag=True, help='Add flag to divide the features of each layer of D by its number of elements')
@click.option('--sqrt-normed', 'sqrt_norm_model_layers', is_flag=True, help='Add flag to divide the features of each layer of D by the square root of its number of elements')
# Octaves options
@click.option('--num-octaves', type=int, help='Number of octaves', default=5, show_default=True)
@click.option('--octave-scale', type=float, help='Image scale between octaves', default=1.4, show_default=True)
@click.option('--unzoom-octave', type=bool, help='Set to True for the octaves to be unzoomed (this will be slower)', default=True, show_default=True)
# Extra parameters for saving the results
@click.option('--outdir', type=click.Path(file_okay=False), help='Directory path to save the results', default=os.path.join(os.getcwd(), 'out', 'discriminator_synthesis'), show_default=True, metavar='DIR')
@click.option('--description', '-desc', type=str, help='Additional description name for the directory path to save results', default='', show_default=True)
def discriminator_dream(
ctx: click.Context,
network_pkl: Union[str, os.PathLike],
cfg: Optional[str],
seed: int,
image_noise: str,
starting_image: Union[str, os.PathLike],
convert_to_grayscale: bool,
class_idx: Optional[int], # TODO: conditional model
learning_rate: float,
iterations: int,
layers: str,
norm_model_layers: bool,
sqrt_norm_model_layers: bool,
num_octaves: int,
octave_scale: float,
unzoom_octave: bool,
outdir: Union[str, os.PathLike],
description: str,
):
print(f'Loading networks from "{network_pkl}"...')
# Define the model
if cfg is not None:
assert network_pkl in gen_utils.resume_specs[cfg], f'This model is not available for config {cfg}!'
network_pkl = gen_utils.resume_specs[cfg][network_pkl]
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
with dnnlib.util.open_url(network_pkl) as f:
D = legacy.load_network_pkl(f)['D'].eval().requires_grad_(False).to(device) # type: ignore
# Get the model resolution (image resizing and getting available layers)
model_resolution = D.img_resolution
# TODO: do this better, as wec can combine these conditions later
layers = layers.split(',')
# We will use the features of the Discriminator, on the layer specified by the user
model = DiscriminatorFeatures(D).requires_grad_(False).to(device)
if 'all' in layers:
# Get all the available layers in a list
layers = get_available_layers(max_resolution=model_resolution)
# Get the image and image name
image, starting_image = get_image(seed=seed, image_noise=image_noise,
starting_image=starting_image,
image_size=model_resolution,
convert_to_grayscale=convert_to_grayscale)
# Make the run dir in the specified output directory
desc = 'discriminator-dream-all_layers'
desc = f'{desc}-{description}' if len(description) != 0 else desc
run_dir = gen_utils.make_run_dir(outdir, desc)
# Save starting image
image.save(os.path.join(run_dir, f'{os.path.basename(starting_image).split(".")[0]}.jpg'))
# Save the configuration used
ctx.obj = {
'network_pkl': network_pkl,
'synthesis_options': {
'seed': seed,
'random_image_noise': image_noise,
'starting_image': starting_image,
'class_idx': class_idx,
'learning_rate': learning_rate,
'iterations': iterations
},
'layer_options': {
'layer': layers,
'norm_model_layers': norm_model_layers,
'sqrt_norm_model_layers': sqrt_norm_model_layers
},
'octaves_options': {
'num_octaves': num_octaves,
'octave_scale': octave_scale,
'unzoom_octave': unzoom_octave
},
'extra_parameters': {
'outdir': run_dir,
'description': description
}
}
# Save the run configuration
gen_utils.save_config(ctx=ctx, run_dir=run_dir)
# For each layer:
for layer in layers:
# Extract deep dream image
dreamed_image = deep_dream(image, model, model_resolution, layers=[layer], normed=norm_model_layers,
sqrt_normed=sqrt_norm_model_layers, iterations=iterations, lr=learning_rate,
octave_scale=octave_scale, num_octaves=num_octaves, unzoom_octave=unzoom_octave)
# Save the resulting dreamed image
filename = f'layer-{layer}_dreamed_{os.path.basename(starting_image).split(".")[0]}.jpg'
Image.fromarray(dreamed_image, 'RGB').save(os.path.join(run_dir, filename))
else:
if 'use_all' in layers:
# Get all available layers
layers = get_available_layers(max_resolution=model_resolution)
else:
# Parse the layers given by the user and leave only those available by the model
available_layers = get_available_layers(max_resolution=model_resolution)
layers = [layer for layer in layers if layer in available_layers]
# Get the image and image name
image, starting_image = get_image(seed=seed, image_noise=image_noise,
starting_image=starting_image,
image_size=model_resolution,
convert_to_grayscale=convert_to_grayscale)
# Extract deep dream image
dreamed_image = deep_dream(image, model, model_resolution, layers=layers, normed=norm_model_layers,
sqrt_normed=sqrt_norm_model_layers, iterations=iterations, lr=learning_rate,
octave_scale=octave_scale, num_octaves=num_octaves, unzoom_octave=unzoom_octave)
# Make the run dir in the specified output directory
desc = f'discriminator-dream-layers_{"-".join(x for x in layers)}'
desc = f'{desc}-{description}' if len(description) != 0 else desc
run_dir = gen_utils.make_run_dir(outdir, desc)
# Save the configuration used
ctx.obj = {
'network_pkl': network_pkl,
'seed': seed,
'starting_image': starting_image,
'class_idx': class_idx,
'learning_rate': learning_rate,
'iterations': iterations,
'layer': layers,
'norm_model_layers': norm_model_layers,
'sqrt_norm_model_layers': sqrt_norm_model_layers,
'octave_scale': octave_scale,
'num_octaves': num_octaves,
'unzoom_octave': unzoom_octave,
'outdir': run_dir,
'description': description
}
# Save the run configuration
gen_utils.save_config(ctx=ctx, run_dir=run_dir)
# Save the resulting image and initial image
filename = f'dreamed_{os.path.basename(starting_image)}'
Image.fromarray(dreamed_image, 'RGB').save(os.path.join(run_dir, filename))
image.save(os.path.join(run_dir, os.path.basename(starting_image)))
# ----------------------------------------------------------------------------
@main.command(name='dream-zoom')
@click.pass_context
@click.option('--network', 'network_pkl', help='Network pickle filename', required=True)
@click.option('--cfg', type=click.Choice(['stylegan3-t', 'stylegan3-r', 'stylegan2']), help='Model base configuration', default=None)
# Synthesis options
@click.option('--seed', type=int, help='Random seed to use', default=0, show_default=True)
@click.option('--random-image-noise', '-noise', 'image_noise', type=click.Choice(['random', 'perlin']), default='random', show_default=True)
@click.option('--starting-image', type=str, help='Path to image to start from', default=None)
@click.option('--convert-to-grayscale', '-grayscale', is_flag=True, help='Add flag to grayscale the initial image')
@click.option('--class', 'class_idx', type=int, help='Class label (unconditional if not specified)', default=None)
@click.option('--lr', 'learning_rate', type=float, help='Learning rate', default=5e-3, show_default=True)
@click.option('--iterations', '-it', type=click.IntRange(min=1), help='Number of gradient ascent steps per octave', default=10, show_default=True)
# Layer options
@click.option('--layers', type=str, help='Comma-separated list of the layers of the Discriminator to use as the features. If "use_all", will use all available layers.', default='b16_conv0', show_default=True)
@click.option('--normed', 'norm_model_layers', is_flag=True, help='Add flag to divide the features of each layer of D by its number of elements')
@click.option('--sqrt-normed', 'sqrt_norm_model_layers', is_flag=True, help='Add flag to divide the features of each layer of D by the square root of its number of elements')
# Octaves options
@click.option('--num-octaves', type=click.IntRange(min=1), help='Number of octaves', default=5, show_default=True)
@click.option('--octave-scale', type=float, help='Image scale between octaves', default=1.4, show_default=True)
@click.option('--unzoom-octave', type=bool, help='Set to True for the octaves to be unzoomed (this will be slower)', default=False, show_default=True)
# Individual frame manipulation options
@click.option('--pixel-zoom', '-zoom', type=int, help='How many pixels to zoom per step (positive for zoom in, negative for zoom out, padded with black)', default=2, show_default=True)
@click.option('--rotation-deg', '-rot', type=float, help='Rotate image counter-clockwise per frame (padded with black)', default=0.0, show_default=True)
@click.option('--translate-x', '-tx', type=float, help='Translate the image in the horizontal axis per frame (from left to right, padded with black)', default=0.0, show_default=True)
@click.option('--translate-y', '-ty', type=float, help='Translate the image in the vertical axis per frame (from top to bottom, padded with black)', default=0.0, show_default=True)
# Video options
@click.option('--fps', type=gen_utils.parse_fps, help='FPS for the mp4 video of optimization progress (if saved)', default=25, show_default=True)
@click.option('--duration-sec', type=float, help='Duration length of the video', default=15.0, show_default=True)
@click.option('--reverse-video', is_flag=True, help='Add flag to reverse the generated video')
@click.option('--include-starting-image', type=bool, help='Include the starting image in the final video', default=True, show_default=True)
# Extra parameters for saving the results
@click.option('--outdir', type=click.Path(file_okay=False), help='Directory path to save the results', default=os.path.join(os.getcwd(), 'out', 'discriminator_synthesis'), show_default=True, metavar='DIR')
@click.option('--description', '-desc', type=str, help='Additional description name for the directory path to save results', default='', show_default=True)
def discriminator_dream_zoom(
ctx: click.Context,
network_pkl: Union[str, os.PathLike],
cfg: Optional[str],
seed: int,
image_noise: Optional[str],
starting_image: Optional[Union[str, os.PathLike]],
convert_to_grayscale: bool,
class_idx: Optional[int], # TODO: conditional model
learning_rate: float,
iterations: int,
layers: str,
norm_model_layers: Optional[bool],
sqrt_norm_model_layers: Optional[bool],
num_octaves: int,
octave_scale: float,
unzoom_octave: Optional[bool],
pixel_zoom: int,
rotation_deg: float,
translate_x: int,
translate_y: int,
fps: int,
duration_sec: float,
reverse_video: bool,
include_starting_image: bool,
outdir: Union[str, os.PathLike],
description: str,
):
print(f'Loading networks from "{network_pkl}"...')
# Define the model
if cfg is not None:
assert network_pkl in gen_utils.resume_specs[cfg], f'This model is not available for config {cfg}!'
network_pkl = gen_utils.resume_specs[cfg][network_pkl]
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
with dnnlib.util.open_url(network_pkl) as f:
D = legacy.load_network_pkl(f)['D'].eval().requires_grad_(False).to(device) # type: ignore
# Get the model resolution (for resizing the starting image if needed)
model_resolution = D.img_resolution
zoom_size = model_resolution - 2 * pixel_zoom
layers = layers.split(',')
if 'use_all' in layers:
# Get all available layers
layers = get_available_layers(max_resolution=model_resolution)
else:
# Parse the layers given by the user and leave only those available by the model
available_layers = get_available_layers(max_resolution=model_resolution)
layers = [layer for layer in layers if layer in available_layers]
# We will use the features of the Discriminator, on the layer specified by the user
model = DiscriminatorFeatures(D).requires_grad_(False).to(device)
# Get the image and image name
image, starting_image = get_image(seed=seed, image_noise=image_noise,
starting_image=starting_image,
image_size=model_resolution,
convert_to_grayscale=convert_to_grayscale)
# Make the run dir in the specified output directory
desc = 'discriminator-dream-zoom'
desc = f'{desc}-{description}' if len(description) != 0 else desc
run_dir = gen_utils.make_run_dir(outdir, desc)
# Save the configuration used
ctx.obj = {
'network_pkl': network_pkl,
'synthesis_options': {
'seed': seed,
'random_image_noise': image_noise,
'starting_image': starting_image,
'class_idx': class_idx,
'learning_rate': learning_rate,
'iterations': iterations
},
'layer_options': {
'layers': layers,
'norm_model_layers': norm_model_layers,
'sqrt_norm_model_layers': sqrt_norm_model_layers
},
'octaves_options': {
'num_octaves': num_octaves,
'octave_scale': octave_scale,
'unzoom_octave': unzoom_octave
},
'frame_manipulation_options': {
'pixel_zoom': pixel_zoom,
'rotation_deg': rotation_deg,
'translate_x': translate_x,
'translate_y': translate_y,
},
'video_options': {
'fps': fps,
'duration_sec': duration_sec,
'reverse_video': reverse_video,
'include_starting_image': include_starting_image,
},
'extra_parameters': {
'outdir': run_dir,
'description': description
}
}
# Save the run configuration
gen_utils.save_config(ctx=ctx, run_dir=run_dir)
num_frames = int(np.rint(duration_sec * fps)) # Number of frames for the video
n_digits = int(np.log10(num_frames)) + 1 # Number of digits for naming each frame
# Save the starting image
starting_image_name = f'dreamed_{0:0{n_digits}d}.jpg' if include_starting_image else 'starting_image.jpg'
image.save(os.path.join(run_dir, starting_image_name))
for idx, frame in enumerate(tqdm(range(num_frames), desc='Dreaming...', unit='frame')):
# Zoom in after the first frame
if idx > 0:
image = crop_resize_rotate(image, crop_size=zoom_size, new_size=model_resolution,
rotation_deg=rotation_deg, translate_x=translate_x, translate_y=translate_y)
# Extract deep dream image
dreamed_image = deep_dream(image, model, model_resolution, layers=layers, normed=norm_model_layers,
sqrt_normed=sqrt_norm_model_layers, iterations=iterations,
lr=learning_rate, octave_scale=octave_scale, num_octaves=num_octaves,
unzoom_octave=unzoom_octave, disable_inner_tqdm=True)
# Save the resulting image and initial image
filename = f'dreamed_{idx + 1:0{n_digits}d}.jpg'
Image.fromarray(dreamed_image, 'RGB').save(os.path.join(run_dir, filename))
# Now, the dreamed image is the starting image
image = Image.fromarray(dreamed_image, 'RGB')
# Save the final video
print('Saving video...')
if os.name == 'nt': # No glob pattern for Windows
stream = ffmpeg.input(os.path.join(run_dir, f'dreamed_%0{n_digits}d.jpg'), framerate=fps)
else:
stream = ffmpeg.input(os.path.join(run_dir, 'dreamed_*.jpg'), pattern_type='glob', framerate=fps)
stream = ffmpeg.output(stream, os.path.join(run_dir, 'dream-zoom.mp4'), crf=20, pix_fmt='yuv420p')
ffmpeg.run(stream, capture_stdout=True, capture_stderr=True) # I dislike ffmpeg's console logs, so I turn them off
# Save the reversed video apart from the original one, so the user can compare both
if reverse_video:
stream = ffmpeg.input(os.path.join(run_dir, 'dream-zoom.mp4'))
stream = stream.video.filter('reverse')
stream = ffmpeg.output(stream, os.path.join(run_dir, 'dream-zoom_reversed.mp4'), crf=20, pix_fmt='yuv420p')
ffmpeg.run(stream, capture_stdout=True, capture_stderr=True) # ibidem
# ----------------------------------------------------------------------------
if __name__ == '__main__':
main()
# ----------------------------------------------------------------------------