Skip to content

Latest commit

 

History

History
executable file
·
98 lines (69 loc) · 3.5 KB

README.md

File metadata and controls

executable file
·
98 lines (69 loc) · 3.5 KB

DeepDeblur_release

Single image deblurring with deep learning.

This is a project page for our research. Please refer to our CVPR 2017 paper for details:

Deep Multi-scale Convolutional Neural Network for Dynamic Scene Deblurring [paper] [supplementary] [slide]

If you find our work useful in your research or publication, please cite our work:

@InProceedings{Nah_2017_CVPR,
  author = {Nah, Seungjun and Kim, Tae Hyun and Lee, Kyoung Mu},
  title = {Deep Multi-Scale Convolutional Neural Network for Dynamic Scene Deblurring},
  booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  month = {July},
  year = {2017}
}

Dependencies

Code

To run demo, download and extract the trained models into "experiment" folder.

Type following command in "code" folder.

qlua -i demo.lua -load -save release_scale3_adv_gamma -blur_type gamma2.2
qlua -i demo.lua -load -save release_scale3_adv_lin -blur_type linear

To train a model, clone this repository and download below dataset in "dataset" directory.

The data structure should look like "dataset/GOPRO_Large/train/GOPRxxxx_xx_xx/blur/xxxxxx.png"

Then run main.lua in "code" directory with optional parameters.

-- Train for 450 epochs, save in 'experiment/scale3'
th main.lua -nEpochs 450 -save scale3
-- Load saved model
th main.lua -load -save scale3
> blur_dir, output_dir = ...
> deblur_dir(blur_dir, output_dir)

optional parameters are listed in opts.lua

Dataset

In this work, we proposed a new dataset of realistic blurry and sharp image pairs using a high-speed camera. However, we do not provide blur kernels as they are unknown.

Statistics Training Test Total
sequences 22 11 33
image pairs 2103 1111 3214

Download links

  • GOPRO_Large : Blurry and sharp image pairs. Blurry images includes both gamma corrected and not corrected (linear CRF) versions.
  • GOPRO_Large_all : All the sharp images used to generate blurry images. You can generate new blurry images by accumulating differing number of sharp frames.

Here are some examples.

Blurry image example 1 Blurry image

Sharp image example 1 Sharp image

Blurry image example 2 Blurry image

Sharp image example 2 Sharp image