forked from lukalabs/cakechat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
119 lines (93 loc) · 4.84 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import argparse
import os
import sys
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
import random
import numpy
import tensorflow as tf
from cakechat.utils.env import init_keras, try_import_horovod
hvd = try_import_horovod()
init_keras(hvd)
# fix random seeds for experiments reproducibility
random.seed(42)
numpy.random.seed(42)
tf.set_random_seed(42)
from cakechat.config import BASE_CORPUS_NAME, TRAIN_CORPUS_NAME, CONTEXT_SENSITIVE_VAL_CORPUS_NAME, \
USE_PRETRAINED_W2V_EMBEDDINGS_LAYER, S3_MODELS_BUCKET_NAME, S3_NN_MODEL_REMOTE_DIR, PREDICTION_MODE_FOR_TESTS
from cakechat.dialog_model.factory import get_reverse_model
from cakechat.dialog_model.model import CakeChatModel
from cakechat.utils.data_types import ModelParam
from cakechat.utils.dataset_loader import get_validation_data_id, get_validation_sets_names, \
get_validation_dataset_name_to_data, get_training_dataset
from cakechat.utils.files_utils import is_non_empty_file, FileNotFoundException
from cakechat.utils.logger import get_tools_logger
from cakechat.utils.s3 import S3FileResolver
from cakechat.utils.text_processing import get_processed_corpus_path, get_index_to_token_path, \
get_index_to_condition_path, load_index_to_item
from cakechat.utils.w2v.model import get_w2v_model_id, get_w2v_model
_logger = get_tools_logger(__file__)
def _look_for_saved_files(files_paths):
for f_path in files_paths:
if not is_non_empty_file(f_path):
raise FileNotFoundException('\nCould not find the following file or it\'s empty: {0}'.format(f_path))
def train(model_init_path=None,
is_reverse_model=False,
train_subset_size=None,
use_pretrained_w2v=USE_PRETRAINED_W2V_EMBEDDINGS_LAYER,
train_corpus_name=TRAIN_CORPUS_NAME,
context_sensitive_val_corpus_name=CONTEXT_SENSITIVE_VAL_CORPUS_NAME,
base_corpus_name=BASE_CORPUS_NAME,
s3_models_bucket_name=S3_MODELS_BUCKET_NAME,
s3_nn_model_remote_dir=S3_NN_MODEL_REMOTE_DIR,
prediction_mode_for_tests=PREDICTION_MODE_FOR_TESTS):
processed_train_corpus_path = get_processed_corpus_path(train_corpus_name)
processed_val_corpus_path = get_processed_corpus_path(context_sensitive_val_corpus_name)
index_to_token_path = get_index_to_token_path(base_corpus_name)
index_to_condition_path = get_index_to_condition_path(base_corpus_name)
# check the existence of all necessary files before compiling the model
_look_for_saved_files(files_paths=[processed_train_corpus_path, processed_val_corpus_path, index_to_token_path])
# load essentials for building model and training
index_to_token = load_index_to_item(index_to_token_path)
index_to_condition = load_index_to_item(index_to_condition_path)
token_to_index = {v: k for k, v in index_to_token.items()}
condition_to_index = {v: k for k, v in index_to_condition.items()}
training_data_param = ModelParam(
value=get_training_dataset(train_corpus_name, token_to_index, condition_to_index, is_reverse_model,
train_subset_size),
id=train_corpus_name)
val_sets_names = get_validation_sets_names()
validation_data_param = ModelParam(
value=get_validation_dataset_name_to_data(val_sets_names, token_to_index, condition_to_index, is_reverse_model),
id=get_validation_data_id(val_sets_names))
w2v_model_param = ModelParam(value=get_w2v_model(), id=get_w2v_model_id()) if use_pretrained_w2v \
else ModelParam(value=None, id=None)
model_resolver_factory = S3FileResolver.init_resolver(
bucket_name=s3_models_bucket_name, remote_dir=s3_nn_model_remote_dir)
reverse_model = get_reverse_model(prediction_mode_for_tests) if not is_reverse_model else None
# build CakeChatModel
cakechat_model = CakeChatModel(
index_to_token,
index_to_condition,
training_data_param=training_data_param,
validation_data_param=validation_data_param,
w2v_model_param=w2v_model_param,
model_init_path=model_init_path,
model_resolver=model_resolver_factory,
is_reverse_model=is_reverse_model,
reverse_model=reverse_model,
horovod=hvd)
# train model
cakechat_model.train_model()
def parse_args():
argparser = argparse.ArgumentParser()
argparser.add_argument(
'-r', '--reverse', action='store_true', help='Pass this flag if you want to train reverse model.')
argparser.add_argument(
'-i',
'--init_weights',
help='Path to the file with weights that should be used for the model\'s initialisation')
argparser.add_argument('-s', '--train-subset-size', action='store', type=int)
return argparser.parse_args()
if __name__ == '__main__':
args = parse_args()
train(model_init_path=args.init_weights, is_reverse_model=args.reverse, train_subset_size=args.train_subset_size)