From 6bc0fc94192cdc19f0bedca5d9ecfb679ddfe432 Mon Sep 17 00:00:00 2001 From: Mario Date: Wed, 13 Nov 2019 15:29:38 +0100 Subject: [PATCH] fix stale URLs; update courses in ML, bootcamps --- README.md | 41 +++++++++++++++++++++++------------------ 1 file changed, 23 insertions(+), 18 deletions(-) diff --git a/README.md b/README.md index cbe5c4a..18131c3 100644 --- a/README.md +++ b/README.md @@ -76,7 +76,7 @@ | | | | | | | | 41. | **Introduction to Deep Learning** | Bhiksha Raj and many others, CMU | [11-785](http://www.cs.cmu.edu/~bhiksha/courses/deeplearning/Spring.2019/www) | [YouTube-Lectures](https://www.youtube.com/playlist?list=PLp-0K3kfddPzNdZPX4p0lVi6AcDXBofuf) | S2019 | | 42. | **Introduction to Deep Learning** | Bhiksha Raj and many others, CMU | [11-785](https://www.cs.cmu.edu/~bhiksha/courses/deeplearning/Fall.2019/www) | [YouTube-Lectures](https://www.youtube.com/playlist?list=PLp-0K3kfddPwz13VqV1PaMXF6V6dYdEsj)
[Recitations](https://www.youtube.com/playlist?list=PLp-0K3kfddPxf4T59JEQKv5UanLPVsxzz) | F2019 | -| 43. | **UvA Deep Learning** | Efstratios Gavves, University of Amsterdam | [UvA-DLC](https://uvadlc.github.io/) | [Lecture-Videos](https://uvadlc.github.io/#lectures) | 2019 | +| 43. | **UvA Deep Learning** | Efstratios Gavves, University of Amsterdam | [UvA-DLC](https://uvadlc.github.io/) | [Lecture-Videos](https://uvadlc.github.io/lectures-apr2019.html) | 2019 | | 44. | **Neural Networks** | Neil Rhodes, Harvey Mudd College | [CS-152](https://www.cs.hmc.edu/~rhodes/cs152/schedule.html) | [YouTube-Lectures](https://www.youtube.com/playlist?list=PLgEuVSRbAI9UIQSHGy4l01laA_12YOqEj) | F2019 | | 45. | **Deep Learning** | Thomas Hofmann, ETH Zürich | [DAL-DL](http://www.da.inf.ethz.ch/teaching/2019/DeepLearning) | [Lecture-Videos](https://video.ethz.ch/lectures/d-infk/2019/autumn/263-3210-00L.html) | F2019 | | 46. | **Deep Learning** | Milan Straka, Charles University | [NPFL114](https://ufal.mff.cuni.cz/courses/npfl114) | [Lecture-Videos](https://ufal.mff.cuni.cz/courses/npfl114/1718-summer) | S2019 | @@ -93,15 +93,16 @@ | 1. | **Linear Algebra** | Gilbert Strang, MIT | [18.06 SC](http://ocw.mit.edu/18-06SCF11) | [YouTube-Lectures](https://www.youtube.com/playlist?list=PL221E2BBF13BECF6C) | 2011 | | 2. | **Probability Primer** | Jeffrey Miller, Brown University | `mathematical monk` | [YouTube-Lectures](https://www.youtube.com/playlist?list=PL17567A1A3F5DB5E4) | 2011 | | 3. | **Information Theory, Pattern Recognition, and Neural Networks** | David Mackay, University of Cambridge | [ITPRNN](http://www.inference.org.uk/mackay/itprnn) | [YouTube-Lectures](https://www.youtube.com/playlist?list=PLruBu5BI5n4aFpG32iMbdWoRVAA-Vcso6) | 2012 | -| 4. | **Probability and Statistics** | Michel van Biezen | `None` | [YouTube-Lectures](https://www.youtube.com/playlist?list=PLX2gX-ftPVXUWwTzAkOhBdhplvz0fByqV) | 2015 | -| 5. | **Linear Algebra: An in-depth Introduction** | Pavel Grinfeld | `None` | [Part-1](https://www.youtube.com/playlist?list=PLlXfTHzgMRUKXD88IdzS14F4NxAZudSmv)
[Part-2](https://www.youtube.com/playlist?list=PLlXfTHzgMRULWJYthculb2QWEiZOkwTSU)
[Part-3](https://www.youtube.com/playlist?list=PLlXfTHzgMRUIqYrutsFXCOmiqKUgOgGJ5)
[Part-4](https://www.youtube.com/playlist?list=PLlXfTHzgMRULZfrNCrrJ7xDcTjGr633mm) | 2015- 2017 | -| 6. | **Multivariable Calculus** | Grant Sanderson, Khan Academy | `None` | [YouTube-Lectures](https://www.youtube.com/playlist?list=PLSQl0a2vh4HC5feHa6Rc5c0wbRTx56nF7) | 2016 | -| 7. | **Essence of Linear Algebra** | Grant Sanderson | `None` | [YouTube-Lectures](https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab) | 2016 | -| 8. | **Essence of Calculus** | Grant Sanderson | `None` | [YouTube-Lectures](https://www.youtube.com/playlist?list=PLZHQObOWTQDMsr9K-rj53DwVRMYO3t5Yr) | 2017-2018 | -| 9. | **Mathematics for Machine Learning** (Linear Algebra, Calculus) | David Dye, Samuel Cooper, and Freddie Page, IC-London | [MML](https://www.coursera.org/learn/linear-algebra-machine-learning) | [YouTube-Lectures](https://www.youtube.com/playlist?list=PLmAuaUS7wSOP-iTNDivR0ANKuTUhEzMe4) | 2018 | -| 10. | **Multivariable Calculus** | S.K. Gupta and Sanjeev Kumar, IIT-Roorkee | [MVC](https://nptel.ac.in/syllabus/111107108/) | [YouTube-Lectures](https://www.youtube.com/playlist?list=PLq-Gm0yRYwTiQtK374NzhFOcQkWmJ71vx) | 2018 | -| 11. | **Engineering Probability** | Rich Radke, Rensselaer Polytechnic Institute | `None` | [YouTube-Lectures](https://www.youtube.com/playlist?list=PLuh62Q4Sv7BU1dN2G6ncyiMbML7OXh_Jx) | 2018 | -| 12. | **Matrix Methods in Data Analysis, Signal Processing, and Machine Learning** | Gilbert Strang, MIT | [18.065](https://ocw.mit.edu/courses/mathematics/18-065-matrix-methods-in-data-analysis-signal-processing-and-machine-learning-spring-2018) | [YouTube-Lectures](https://www.youtube.com/playlist?list=PLUl4u3cNGP63oMNUHXqIUcrkS2PivhN3k) | S2018 | +| 4. | **Linear Algebra Review** | Zico Kolter, CMU | [LinAlg](http://www.cs.cmu.edu/~zkolter/course/linalg/index.html) | [YouTube-Lectures](http://www.cs.cmu.edu/~zkolter/course/linalg/index.html) | 2013 | +| 5. | **Probability and Statistics** | Michel van Biezen | `None` | [YouTube-Lectures](https://www.youtube.com/playlist?list=PLX2gX-ftPVXUWwTzAkOhBdhplvz0fByqV) | 2015 | +| 6. | **Linear Algebra: An in-depth Introduction** | Pavel Grinfeld | `None` | [Part-1](https://www.youtube.com/playlist?list=PLlXfTHzgMRUKXD88IdzS14F4NxAZudSmv)
[Part-2](https://www.youtube.com/playlist?list=PLlXfTHzgMRULWJYthculb2QWEiZOkwTSU)
[Part-3](https://www.youtube.com/playlist?list=PLlXfTHzgMRUIqYrutsFXCOmiqKUgOgGJ5)
[Part-4](https://www.youtube.com/playlist?list=PLlXfTHzgMRULZfrNCrrJ7xDcTjGr633mm) | 2015- 2017 | +| 7. | **Multivariable Calculus** | Grant Sanderson, Khan Academy | `None` | [YouTube-Lectures](https://www.youtube.com/playlist?list=PLSQl0a2vh4HC5feHa6Rc5c0wbRTx56nF7) | 2016 | +| 8. | **Essence of Linear Algebra** | Grant Sanderson | `None` | [YouTube-Lectures](https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab) | 2016 | +| 9. | **Essence of Calculus** | Grant Sanderson | `None` | [YouTube-Lectures](https://www.youtube.com/playlist?list=PLZHQObOWTQDMsr9K-rj53DwVRMYO3t5Yr) | 2017-2018 | +| 10. | **Mathematics for Machine Learning** (Linear Algebra, Calculus) | David Dye, Samuel Cooper, and Freddie Page, IC-London | [MML](https://www.coursera.org/learn/linear-algebra-machine-learning) | [YouTube-Lectures](https://www.youtube.com/playlist?list=PLmAuaUS7wSOP-iTNDivR0ANKuTUhEzMe4) | 2018 | +| 11. | **Multivariable Calculus** | S.K. Gupta and Sanjeev Kumar, IIT-Roorkee | [MVC](https://nptel.ac.in/syllabus/111107108/) | [YouTube-Lectures](https://www.youtube.com/playlist?list=PLq-Gm0yRYwTiQtK374NzhFOcQkWmJ71vx) | 2018 | +| 12. | **Engineering Probability** | Rich Radke, Rensselaer Polytechnic Institute | `None` | [YouTube-Lectures](https://www.youtube.com/playlist?list=PLuh62Q4Sv7BU1dN2G6ncyiMbML7OXh_Jx) | 2018 | +| 13. | **Matrix Methods in Data Analysis, Signal Processing, and Machine Learning** | Gilbert Strang, MIT | [18.065](https://ocw.mit.edu/courses/mathematics/18-065-matrix-methods-in-data-analysis-signal-processing-and-machine-learning-spring-2018) | [YouTube-Lectures](https://www.youtube.com/playlist?list=PLUl4u3cNGP63oMNUHXqIUcrkS2PivhN3k) | S2018 | | | | | | | | [Go to Contents :arrow_heading_up:](https://github.com/kmario23/deep-learning-drizzle#contents) @@ -116,14 +117,15 @@ | 2. | **Introduction to Optimization** | Michael Zibulevsky, Technion | [CS-236330](https://sites.google.com/site/michaelzibulevsky/optimization-course) | [YouTube-Lectures](https://www.youtube.com/playlist?list=PLDFB2EEF4DDAFE30B) | 2009 | | 3. | **Optimization for Machine Learning** | S V N Vishwanathan, Purdue University | `None` | [YouTube-Lectures](https://www.youtube.com/playlist?list=PL09B0E8AFC69BE108) | 2011 | | 4. | **Optimization** | Geoff Gordon & Ryan Tibshirani, CMU | [10-725](https://www.cs.cmu.edu/~ggordon/10725-F12/) | [YouTube-Lectures](https://www.youtube.com/playlist?list=PL7y-1rk2cCsDOv91McLOnV4kExFfTB7dU) | 2012 | -| 5. | **Convex Optimization** | Joydeep Dutta, IIT-Kanpur | [cvx-nptel](https://nptel.ac.in/syllabus/111104068/) | [YouTube-Lectures](https://www.youtube.com/playlist?list=PLbMVogVj5nJQHFqfiSdgaLCCWvDcm1W4l) | 2013 | -| 6. | **Foundations of Optimization** | Joydeep Dutta, IIT-Kanpur | `None` | [YouTube-Lectures](https://www.youtube.com/playlist?list=PLbMVogVj5nJRRbofh3Qm3P6_NVyevDGD_) | 2014 | +| 5. | **Convex Optimization** | Joydeep Dutta, IIT-Kanpur | [cvx-nptel](https://nptel.ac.in/courses/111/104/111104068) | [YouTube-Lectures](https://www.youtube.com/playlist?list=PLbMVogVj5nJQHFqfiSdgaLCCWvDcm1W4l) | 2013 | +| 6. | **Foundations of Optimization** | Joydeep Dutta, IIT-Kanpur | [fop-nptel](https://nptel.ac.in/courses/111/104/111104071) | [YouTube-Lectures](https://www.youtube.com/playlist?list=PLbMVogVj5nJRRbofh3Qm3P6_NVyevDGD_) | 2014 | | 7. | **Algorithmic Aspects of Machine Learning** | Ankur Moitra, MIT | [18.409-AAML](http://people.csail.mit.edu/moitra/409.html) | [YouTube-Lectures](https://www.youtube.com/playlist?list=PLB3sDpSRdrOvI1hYXNsa6Lety7K8FhPpx) | S2015 | | 8. | **Numerical Optimization** | Shirish K. Shevade, IISC | `None` | [YouTube-Lectures](https://www.youtube.com/playlist?list=PL6EA0722B99332589) | 2015 | | 9. | **Advanced Algorithms** | Ankur Moitra, MIT | [6.854-AA](http://people.csail.mit.edu/moitra/854.html) | [YouTube-Lectures](https://www.youtube.com/playlist?list=PL6ogFv-ieghdoGKGg2Bik3Gl1glBTEu8c) | S2016 | | 10. | **Introduction to Optimization** | Michael Zibulevsky, Technion | `None` | [YouTube-Lectures](https://www.youtube.com/playlist?list=PLBD31626529B0AC2A) | 2016 | -| 11. | **Convex Optimization** | Ryan Tibshirani, CMU | [cvx-opt](https://www.stat.cmu.edu/~ryantibs/convexopt/) | [YouTube-Lectures](https://www.youtube.com/playlist?list=PLpIxOj-HnDsMM7BCNGC3hPFU3DfCWfVIw) | F2018 | -| 12. | **Modern Algorithmic Optimization** | Yurii Nesterov, UCLouvain | `None` | [YouTube-Lectures](https://www.youtube.com/playlist?list=PLEqoHzpnmTfAoUDqnmMly-KgyJ6ZM_axf) | 2018 | +| 11. | **Convex Optimization** | Javier Peña & Ryan Tibshirani | [10-725/36-725](https://www.stat.cmu.edu/~ryantibs/convexopt-F16) | [YouTube-Lectures](https://www.youtube.com/playlist?list=PLjbUi5mgii6AVdvImLB9-Hako68p9MpIC) | F2016 | +| 12. | **Convex Optimization** | Ryan Tibshirani, CMU | [cvx-opt](https://www.stat.cmu.edu/~ryantibs/convexopt/) | [YouTube-Lectures](https://www.youtube.com/playlist?list=PLpIxOj-HnDsMM7BCNGC3hPFU3DfCWfVIw) | F2018 | +| 13. | **Modern Algorithmic Optimization** | Yurii Nesterov, UCLouvain | `None` | [YouTube-Lectures](https://www.youtube.com/playlist?list=PLEqoHzpnmTfAoUDqnmMly-KgyJ6ZM_axf) | 2018 | | | | | | | | [Go to Contents :arrow_heading_up:](https://github.com/kmario23/deep-learning-drizzle#contents) @@ -207,7 +209,7 @@ [Go to Contents :arrow_heading_up:](https://github.com/kmario23/deep-learning-drizzle#contents) :heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign: -### :loudspeaker: Probabilistic Graphical Models - *(Foundation for Graph Neural Networks)* :sparkles: +### :loudspeaker: Probabilistic Graphical Models :sparkles: :heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign::heavy_minus_sign: | S.No | Course Name | University/Instructor(s) | Course WebPage | Lecture Videos | Year | @@ -279,7 +281,7 @@ | S.No | Course Name | University/Instructor(s) | Course WebPage | Lecture Videos | Year | | ---- | --------------------------------------------------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ | --------- | | 1. | **Computational Linguistics I** | Jordan Boyd-Graber, University of Maryland | [CMS-723](http://users.umiacs.umd.edu/~jbg/teaching/CMSC_723/) | [YouTube-Lectures](https://www.youtube.com/playlist?list=PLegWUnz91WfuPebLI97-WueAP90JO-15i) | 2013-2018 | -| 2. | **Deep Learning for Natural Language Processing** | Nils Reimers, TU Darmstadt | [DL4NLP](https://github.com/UKPLab/deeplearning4nlp-tutorial) | [YouTube-Lectures](https://www.youtube.com/playlist?list=PLpIxOj-HnDsPgpBnVmWp8tW4RNdI0g25i) | 2015-2017 | +| 2. | **Deep Learning for Natural Language Processing** | Nils Reimers, TU Darmstadt | [DL4NLP](https://github.com/UKPLab/deeplearning4nlp-tutorial) | [YouTube-Lectures](https://www.youtube.com/channel/UC1zCuTrfpjT6Sv2kJk-JkvA/videos) | 2015-2017 | | 3. | **Deep Learning for Natural Language Processing** | Many Legends, DeepMind-Oxford | [DL-NLP](http://www.cs.ox.ac.uk/teaching/courses/2016-2017/dl/) | [YouTube-Lectures](https://www.youtube.com/playlist?list=PL613dYIGMXoZBtZhbyiBqb0QtgK6oJbpm) | 2017 | | 4. | **Deep Learning for Speech & Language** | UPC Barcelona | [DL-SL](https://telecombcn-dl.github.io/2017-dlsl/) | [Lecture-Videos](https://telecombcn-dl.github.io/2017-dlsl/) | 2017 | | 5. | **Neural Networks for Natural Language Processing** | Graham Neubig, CMU | [NN4NLP](http://www.phontron.com/class/nn4nlp2017/) [Code](https://github.com/neubig/nn4nlp-code) | [YouTube-Lectures](https://www.youtube.com/playlist?list=PL8PYTP1V4I8ABXzdqtOpB_eqBlVAz_xPT) | 2017 | @@ -404,8 +406,11 @@ | 43. | **Deep Learning for Science School** | Many folks, LBNL, Berkeley | [DLfSS](https://dl4sci-school.lbl.gov/agenda) | [YouTube-Lectures](https://www.youtube.com/playlist?list=PL20S5EeApOSvfvEyhCPOUzU7zkBcR5-eL) | 2019 | | 44. | **Emerging Challenges in Deep Learning** | Lots of Legends, Simons Institute, Berkeley | [ECDL](https://simons.berkeley.edu/workshops/schedule/10629) | [YouTube-Lectures](https://www.youtube.com/playlist?list=PLgKuh-lKre10BpafDrv0fg2VNUweWXWVd) | 2019 | | 45. | **Full Stack Deep Learning** | Pieter Abbeel and many others, UC Berkeley | [FSDL-M19](https://fullstackdeeplearning.com/march2019) | [YouTube-Lectures-Day-1](https://www.youtube.com/playlist?list=PL1T8fO7ArWlcf3Hc4VMEVBlH8HZm_NbeB)
[Day-2](https://www.youtube.com/playlist?list=PL1T8fO7ArWlf6TWwdstb-PcwlubnlrKrm) | 2019 | -| 46. | **Deep Learning and Reinforcement Learning Summer School** | Lots of Legends, AMII, Edmonton, Canada | [DLRL-2019](https://dlrlsummerschool.ca/past-years) | [YouTube-Lectures](https://www.youtube.com/playlist?list=PLKlhhkvvU8-aXmPQZNYG_e-2nTd0tJE8v) | 2019 | -| | | | | | | +| 46. | **Algorithmic and Theoretical aspects of Machine Learning** | Lots of legends, IIIT-Bengaluru | [ACM-ML](https://india.acm.org/education/machine-learning)
[nptel](https://nptel.ac.in/courses/128/106/128106011/) | [YouTube-Lectures](https://nptel.ac.in/courses/128/106/128106011) | 2019 | +| 47. | **Deep Learning and Reinforcement Learning Summer School** | Lots of Legends, AMII, Edmonton, Canada | [DLRL-2019](https://dlrlsummerschool.ca/past-years) | [YouTube-Lectures](https://www.youtube.com/playlist?list=PLKlhhkvvU8-aXmPQZNYG_e-2nTd0tJE8v) | 2019 | +| 48. | **Mathematics of Machine Learning** - Summer Graduate School | Lots of Legends, University of Washington | [MoML-SGS](http://www.msri.org/summer_schools/866#schedule) | [YouTube-Lectures](https://www.youtube.com/playlist?list=PLTPQEx-31JXhguCush5J7OGnEORofoCW9) | 2019 | +| 49. | **Workshop on Theory of Deep Learning: Where next?** | Lots of Legends, IAS, Princeton University | [WTDL](https://www.math.ias.edu/wtdl) | [YouTube-Lectures](https://www.youtube.com/playlist?list=PLdDZb3TwJPZ5dqqg_S-rgJqSFeH4DQqFQ) | 2019 | +| | | | | | | | | | | | | | [Go to Contents :arrow_heading_up:](https://github.com/kmario23/deep-learning-drizzle#contents)