-
Notifications
You must be signed in to change notification settings - Fork 1
/
word2vec_cbow.py
180 lines (141 loc) · 6.61 KB
/
word2vec_cbow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import random
import re
import numpy as np
from six.moves import urllib
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
from imdb_sentiment_data import get_dataset
from word2vec_fns import generate_batch, get_mean_context_embeds
vocabulary_size = 50000
def read_and_clean_data(path):
with open(path,"r") as o:
text = o.read()
# punc_rem = text.translate(str.maketrans(",", punctuation))
# punc_rem = text.translate(None, punctuation)
punc_rem = re.sub(r'[^\w\s]', '', text)
lower_words = map(lambda x: x.lower(),punc_rem.split())
return lower_words
corpus = []
count = []
words = []
folders = [ "pos", "neg"]
for folder in folders:
for path in glob.glob(folder + "/*.txt"):
words += read_and_clean_data(path)
if len(set(words))> vocabulary_size:
break
else:
continue
break
count = Counter(words)
unique_words = sorted(count.keys())
idxs = range(len(count.keys()))
data, count, dictionary, reverse_dictionary = get_dataset(vocabulary_size)
reverse_dictionary = dict(zip(unique_words, idxs))
dictionary = dict(zip(idxs, unique_words))
#print('Most common words (+UNK)', count[:5])
#print('Sample data', data[:10], [reverse_dictionary[i] for i in data[:10]])
# sanity check the batches
batch_size = 2
check_skip_window = 2 # How many words to consider left and right.
batch, labels = generate_batch(data, batch_size=8, skip_window=check_skip_window)
for i in range(batch_size):
print(batch[i, :], [reverse_dictionary[batch[i, j]] for j in range(check_skip_window*2)],
'->', labels[i, 0], reverse_dictionary[labels[i, 0]])
# Step 4: Build and train a skip-gram model.
batch_size = 2
embedding_size = 100 # Dimension of the embedding vector.
skip_window = 1 # How many words to consider left and right.
# We pick a random validation set to sample nearest neighbors. Here we limit the
# validation samples to the words that have a low numeric ID, which by
# construction are also the most frequent.
valid_size = 16 # Random set of words to evaluate similarity on.
valid_window = 100 # Only pick dev samples in the head of the distribution.
valid_examples = np.random.choice(valid_window, valid_size, replace=False)
num_sampled = 64 # Number of negative examples to sample.
graph = tf.Graph()
with graph.as_default():
# Input data.
train_inputs = tf.placeholder(tf.int32, shape=[batch_size, 2*skip_window])
train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1])
valid_dataset = tf.constant(valid_examples, dtype=tf.int32)
# Ops and variables pinned to the CPU because of missing GPU implementation
with tf.device('/cpu:0'):
# Look up embeddings for inputs.
embeddings = tf.Variable(
tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0))
# train_inputs is of shape (batch_size, 2*skip_window)
mean_context_embeds =\
get_mean_context_embeds(embeddings, train_inputs)
# Construct the variables for the NCE loss
nce_weights = tf.Variable(
tf.truncated_normal([vocabulary_size, embedding_size],
stddev=1.0 / math.sqrt(embedding_size)))
nce_biases = tf.Variable(tf.zeros([vocabulary_size]))
# Compute the average NCE loss for the batch.
# tf.nce_loss automatically draws a new sample of the negative labels each
# time we evaluate the loss.
loss = tf.reduce_mean(
tf.nn.nce_loss(weights=nce_weights,
biases=nce_biases,
labels=train_labels,
inputs=mean_context_embeds,
num_sampled=num_sampled,
num_classes=vocabulary_size))
# Construct the SGD optimizer using a learning rate of 1.0.
optimizer = tf.train.GradientDescentOptimizer(1.0).minimize(loss)
# Compute the cosine similarity between minibatch examples and all embeddings.
norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True))
normalized_embeddings = embeddings / norm
valid_embeddings = tf.nn.embedding_lookup(
normalized_embeddings, valid_dataset)
similarity = tf.matmul(
valid_embeddings, normalized_embeddings, transpose_b=True)
# Add variable initializer.
init = tf.global_variables_initializer()
# Step 5: Begin training.
num_steps = 100001
saver = tf.train.Saver({'embedding':embeddings}, max_to_keep=None)
with tf.Session(graph=graph) as session:
# We must initialize all variables before we use them.
init.run()
print('Initialized')
average_loss = 0
for step in range(num_steps):
batch_inputs, batch_labels = generate_batch(data, batch_size, skip_window)
n_batch_inputs = []
n_batch_labels = []
for i in range(batch_size):
n_batch_inputs.append([reverse_dictionary[batch_inputs[i, j]] for j in range(skip_window * 2)])
n_batch_labels.append([reverse_dictionary[labels[i, 0]]])
feed_dict = {train_inputs: n_batch_inputs, train_labels: n_batch_labels}
# We perform one update step by evaluating the optimizer op (including it
# in the list of returned values for session.run()
_, loss_val = session.run([optimizer, loss], feed_dict=feed_dict)
average_loss += loss_val
if step % 2000 == 0:
if step > 0:
average_loss /= 2000
# The average loss is an estimate of the loss over the last 2000 batches.
print('Average loss at step ', step, ': ', average_loss)
average_loss = 0
# Note that this is expensive (~20% slowdown if computed every 500 steps)
if step % 10000 == 0:
sim = similarity.eval()
for i in range(valid_size):
valid_word = dictionary[valid_examples[i]]
top_k = 8 # number of nearest neighbors
nearest = (-sim[i, :]).argsort()[1:top_k + 1]
log_str = 'Nearest to %s:' % valid_word
for k in range(top_k):
close_word = dictionary[nearest[k]]
log_str = '%s %s,' % (log_str, close_word)
print(log_str)
np.save("CBOW_Embeddings", normalized_embeddings.eval())
#saver.save(session, 'w2vEmbedding', global_step=step)
final_embeddings = normalized_embeddings.eval()
np.save("CBOW_Embeddings", final_embeddings)