forked from UKPLab/sentence-transformers
-
Notifications
You must be signed in to change notification settings - Fork 0
/
RoBERTa.py
executable file
·100 lines (72 loc) · 3.85 KB
/
RoBERTa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
from torch import Tensor
from torch import nn
from pytorch_transformers import RobertaModel, RobertaTokenizer
import json
from typing import Union, Tuple, List, Dict
import os
import numpy as np
import logging
class RoBERTa(nn.Module):
"""RoBERTa model to generate token embeddings.
Each token is mapped to an output vector from RoBERTa.
"""
def __init__(self, model_name_or_path: str, max_seq_length: int = 128, do_lower_case: bool = True):
super(RoBERTa, self).__init__()
self.config_keys = ['max_seq_length', 'do_lower_case']
self.do_lower_case = do_lower_case
if max_seq_length > 510:
logging.warning("RoBERTa only allows a max_seq_length of 510 (512 with special tokens). Value will be set to 510")
max_seq_length = 510
self.max_seq_length = max_seq_length
self.roberta = RobertaModel.from_pretrained(model_name_or_path)
self.tokenizer = RobertaTokenizer.from_pretrained(model_name_or_path, do_lower_case=do_lower_case)
self.cls_token_id = self.tokenizer.convert_tokens_to_ids([self.tokenizer.cls_token])[0]
self.sep_token_id = self.tokenizer.convert_tokens_to_ids([self.tokenizer.sep_token])[0]
def forward(self, features):
"""Returns token_embeddings, cls_token"""
#RoBERTa does not use token_type_ids
output_tokens = self.roberta(input_ids=features['input_ids'], token_type_ids=None, attention_mask=features['input_mask'])[0]
cls_tokens = output_tokens[:, 0, :] # CLS token is first token
features.update({'token_embeddings': output_tokens, 'cls_token_embeddings': cls_tokens, 'input_mask': features['input_mask']})
return features
def get_word_embedding_dimension(self) -> int:
return self.roberta.config.hidden_size
def tokenize(self, text: str) -> List[str]:
"""
Tokenizes a text and maps tokens to token-ids
"""
return self.tokenizer.convert_tokens_to_ids(self.tokenizer.tokenize(text))
def get_sentence_features(self, tokens: List[str], pad_seq_length: int):
"""
Convert tokenized sentence in its embedding ids, segment ids and mask
:param tokens:
a tokenized sentence
:param pad_seq_length:
the maximal length of the sequence. Cannot be greater than self.sentence_transformer_config.max_seq_length
:return: embedding ids, segment ids and mask for the sentence
"""
pad_seq_length = min(pad_seq_length, self.max_seq_length)
tokens = tokens[:pad_seq_length]
input_ids = [self.cls_token_id] + tokens + [self.sep_token_id] + [self.sep_token_id]
sentence_length = len(input_ids)
pad_seq_length += 3 ##Add Space for CLS + SEP + SEP token
input_mask = [1] * len(input_ids)
# Zero-pad up to the sequence length. BERT: Pad to the right
padding = [0] * (pad_seq_length - len(input_ids))
input_ids += padding
input_mask += padding
assert len(input_ids) == pad_seq_length
assert len(input_mask) == pad_seq_length
return {'input_ids': np.asarray(input_ids, dtype=np.int64), 'input_mask': np.asarray(input_mask, dtype=np.int64), 'sentence_lengths': np.asarray(sentence_length, dtype=np.int64)}
def get_config_dict(self):
return {key: self.__dict__[key] for key in self.config_keys}
def save(self, output_path: str):
self.roberta.save_pretrained(output_path)
self.tokenizer.save_pretrained(output_path)
with open(os.path.join(output_path, 'sentence_roberta_config.json'), 'w') as fOut:
json.dump(self.get_config_dict(), fOut, indent=2)
@staticmethod
def load(input_path: str):
with open(os.path.join(input_path, 'sentence_roberta_config.json')) as fIn:
config = json.load(fIn)
return RoBERTa(model_name_or_path=input_path, **config)