-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_ppo.py
364 lines (299 loc) · 11.5 KB
/
train_ppo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
import random
from collections import deque
from time import time
import numpy as np
import torch
import habitat
from habitat_baselines.config.default import get_config as cfg_baseline
from habitat import logger
from habitat.sims.habitat_simulator.actions import HabitatSimActions
from habitat.config.default import get_config as cfg_env
from habitat.datasets.registration import make_dataset
from ppo_utils import PPO,Policy, RolloutStorage,batch_obs, ppo_args, update_linear_schedule
from habitat.datasets.pointnav.pointnav_dataset import PointNavDatasetV1
class NavRLEnv(habitat.RLEnv):
def __init__(self, config_env, config_baseline, dataset):
self._config_env = config_env.TASK
self._config_baseline = config_baseline
self._previous_target_distance = None
self._previous_action = None
self._episode_distance_covered = None
self.stg = None
super().__init__(config_env, dataset)
def reset(self):
self._previous_action = None
observations = super().reset()
self._previous_target_distance = self.habitat_env.current_episode.info[
"geodesic_distance"
]
infos= self.get_info(observations)
return observations, infos
def step(self, action):
self._previous_action = action
return super().step(action)
def get_reward_range(self):
return (
self._config_baseline.RL.SLACK_REWARD - 1.0,
self._config_baseline.RL.SUCCESS_REWARD + 1.0,
)
def get_reward(self, observations):
reward = self._config_baseline.RL.SLACK_REWARD
current_target_distance = self._distance_target()
reward += self._previous_target_distance - current_target_distance
self._previous_target_distance = current_target_distance
if self._episode_success():
reward += self._config_baseline.RL.SUCCESS_REWARD
return reward
def _distance_target(self):
current_position = self._env.sim.get_agent_state().position.tolist()
target_position = self._env.current_episode.goals[0].position
distance = self._env.sim.geodesic_distance(
current_position, target_position
)
return distance
def _episode_success(self):
if (
self._previous_action == HabitatSimActions.STOP
and self._distance_target() < self._config_env.SUCCESS_DISTANCE
):
return True
return False
def get_done(self, observations):
done = False
if self._env.episode_over or self._episode_success():
done = True
return done
def get_info(self, observations):
return self.habitat_env.get_metrics()
def make_env_fn(config_env, config_baseline, rank):
dataset = PointNavDatasetV1(config_env.DATASET)
config_env.defrost()
config_env.SIMULATOR.SCENE = dataset.episodes[0].scene_id
config_env.freeze()
env = NavRLEnv(
config_env=config_env, config_baseline=config_baseline, dataset=dataset
)
env.seed(rank)
return env
def construct_envs(args):
env_configs = []
baseline_configs = []
basic_config = cfg_env(config_paths=args.task_config, opts=args.opts)
basic_config.defrost()
basic_config.DATASET.SPLIT = 'train'
basic_config.DATASET.DATA_PATH = (
"data/datasets/pointnav/gibson/v1/{split}/{split}.json.gz")
basic_config.DATASET.TYPE = "PointNavDataset-v1"
basic_config.freeze()
dataset = PointNavDatasetV1(basic_config.DATASET)
scenes = dataset.get_scenes_to_load(basic_config.DATASET)
if len(scenes) > 0:
random.shuffle(scenes)
assert len(scenes) >= args.num_processes, (
"reduce the number of processes as there "
"aren't enough number of scenes"
)
scene_split_size = int(np.floor(len(scenes) / args.num_processes))
scene_splits = [[] for _ in range(args.num_processes)]
for j, s in enumerate(scenes):
scene_splits[j % len(scene_splits)].append(s)
assert sum(map(len, scene_splits)) == len(scenes)
for i in range(args.num_processes):
config_env = cfg_env(config_paths=args.task_config, opts=args.opts)
config_env.defrost()
config_env.DATASET.SPLIT = 'train'
config_env.DATASET.DATA_PATH = (
"data/datasets/pointnav/gibson/v1/{split}/{split}.json.gz")
config_env.DATASET.TYPE = "PointNavDataset-v1"
if len(scenes) > 0:
config_env.DATASET.CONTENT_SCENES = scene_splits[i]
config_env.SIMULATOR.HABITAT_SIM_V0.GPU_DEVICE_ID = args.sim_gpu_id
agent_sensors = args.sensors.strip().split(",")
for sensor in agent_sensors:
assert sensor in ["RGB_SENSOR", "DEPTH_SENSOR"]
config_env.SIMULATOR.AGENT_0.SENSORS = agent_sensors
config_env.freeze()
env_configs.append(config_env)
config_baseline = cfg_baseline(opts=['BASE_TASK_CONFIG_PATH',args.task_config])
baseline_configs.append(config_baseline)
logger.info("config_env: {}".format(config_env))
envs = habitat.VectorEnv(
make_env_fn=make_env_fn,
env_fn_args=tuple(
tuple(
zip(env_configs, baseline_configs, range(args.num_processes))
)
),
)
return envs
def run_training():
parser = ppo_args()
args = parser.parse_args()
random.seed(args.seed)
device = torch.device("cuda:{}".format(args.pth_gpu_id))
logger.add_filehandler(args.log_file)
if not os.path.isdir(args.checkpoint_folder):
os.makedirs(args.checkpoint_folder)
for p in sorted(list(vars(args))):
logger.info("{}: {}".format(p, getattr(args, p)))
envs = construct_envs(args)
task_cfg = cfg_env(config_paths=args.task_config)
actor_critic = Policy(
observation_space=envs.observation_spaces[0],
action_space=envs.action_spaces[0],
hidden_size=args.hidden_size,
goal_sensor_uuid=task_cfg.TASK.GOAL_SENSOR_UUID,
)
actor_critic.to(device)
agent = PPO(
actor_critic,
args.clip_param,
args.ppo_epoch,
args.num_mini_batch,
args.value_loss_coef,
args.entropy_coef,
lr=args.lr,
eps=args.eps,
max_grad_norm=args.max_grad_norm,
)
logger.info(
"agent number of parameters: {}".format(
sum(param.numel() for param in agent.parameters())
)
)
observations,infos = envs.reset()
batch = batch_obs(observations)
rollouts = RolloutStorage(
args.num_steps,
envs.num_envs,
envs.observation_spaces[0],
envs.action_spaces[0],
args.hidden_size,
)
for sensor in rollouts.observations:
rollouts.observations[sensor][0].copy_(batch[sensor])
rollouts.to(device)
episode_rewards = torch.zeros(envs.num_envs, 1)
episode_counts = torch.zeros(envs.num_envs, 1)
current_episode_reward = torch.zeros(envs.num_envs, 1)
window_episode_reward = deque()
window_episode_counts = deque()
t_start = time()
env_time = 0
pth_time = 0
count_steps = 0
count_checkpoints = 0
for update in range(args.num_updates):
if args.use_linear_lr_decay:
update_linear_schedule(
agent.optimizer, update, args.num_updates, args.lr
)
agent.clip_param = args.clip_param * (1 - update / args.num_updates)
for step in range(args.num_steps):
t_sample_action = time()
# sample actions
with torch.no_grad():
step_observation = {
k: v[step] for k, v in rollouts.observations.items()
}
(
values,
actions,
actions_log_probs,
recurrent_hidden_states,
) = actor_critic.act(
step_observation,
rollouts.recurrent_hidden_states[step],
rollouts.masks[step],
)
pth_time += time() - t_sample_action
t_step_env = time()
observations, rewards, dones, infos = envs.step([a[0].item() for a in actions])
env_time += time() - t_step_env
t_update_stats = time()
batch = batch_obs(observations)
rewards = torch.tensor(rewards, dtype=torch.float)
rewards = rewards.unsqueeze(1)
masks = torch.tensor(
[[0.0] if done else [1.0] for done in dones], dtype=torch.float
)
current_episode_reward += rewards
episode_rewards += (1 - masks) * current_episode_reward
episode_counts += 1 - masks
current_episode_reward *= masks
rollouts.insert(
batch,
recurrent_hidden_states,
actions,
actions_log_probs,
values,
rewards,
masks,
)
count_steps += envs.num_envs
pth_time += time() - t_update_stats
if len(window_episode_reward) == args.reward_window_size:
window_episode_reward.popleft()
window_episode_counts.popleft()
window_episode_reward.append(episode_rewards.clone())
window_episode_counts.append(episode_counts.clone())
t_update_model = time()
with torch.no_grad():
last_observation = {
k: v[-1] for k, v in rollouts.observations.items()
}
next_value = actor_critic.get_value(
last_observation,
rollouts.recurrent_hidden_states[-1],
rollouts.masks[-1],
).detach()
rollouts.compute_returns(
next_value, args.use_gae, args.gamma, args.tau
)
value_loss, action_loss, dist_entropy = agent.update(rollouts)
rollouts.after_update()
pth_time += time() - t_update_model
# log stats
if update > 0 and update % args.log_interval == 0:
logger.info(
"update: {}\tfps: {:.3f}\t".format(
update, count_steps / (time() - t_start)
)
)
logger.info(
"update: {}\tenv-time: {:.3f}s\tpth-time: {:.3f}s\t"
"frames: {}".format(update, env_time, pth_time, count_steps)
)
window_rewards = (
window_episode_reward[-1] - window_episode_reward[0]
).sum()
window_counts = (
window_episode_counts[-1] - window_episode_counts[0]
).sum()
if window_counts > 0:
logger.info(
"Average window size {} reward: {:3f}".format(
len(window_episode_reward),
(window_rewards / window_counts).item(),
)
)
else:
logger.info("No episodes finish in current window")
# checkpoint model
if update % args.checkpoint_interval == 0:
checkpoint = {"state_dict": agent.state_dict()}
torch.save(
checkpoint,
os.path.join(
args.checkpoint_folder,
"ckpt.{}.pth".format(count_checkpoints),
),
)
count_checkpoints += 1
if __name__ == "__main__":
run_training()