Skip to content

Latest commit

 

History

History
19 lines (15 loc) · 726 Bytes

README.md

File metadata and controls

19 lines (15 loc) · 726 Bytes

Daily updated RAG System with PostgreSQL Vector Database

A Retrieval-Augmented Generation (RAG) system that automatically processes text documents from Google Drive, stores embeddings in PostgreSQL, and provides a question-answering interface.

Features

  • Automatic document processing from Google Drive
  • Vector similarity search using pgvector
  • Real-time question answering through Gradio interface
  • Daily automated checks for new documents via GitHub Actions

Prerequisites

  • Supabase account (for PostgreSQL database)
  • Google Cloud account with Drive API enabled
  • Python 3.10 or higher

To-do

  • Develop Gradio app for RAG-enabled chat
  • Deploy chat app using Docker and Google Cloud
  • Continue adding data