forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathScatterGatherKernel.cpp
348 lines (302 loc) · 13.2 KB
/
ScatterGatherKernel.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/native/NonEmptyUtils.h>
#include <ATen/native/DispatchStub.h>
#include <ATen/native/TensorIterator.h>
#include <ATen/native/TensorAdvancedIndexing.h>
#include <ATen/core/Tensor.h>
#include <ATen/Dispatch.h>
#include <ATen/Parallel.h>
#include <c10/util/irange.h>
namespace at { namespace native {
namespace {
// Implement as functors since lambdas don't get optimized.
class ReduceMultiply {
public:
template <typename scalar_t>
constexpr void operator() (scalar_t * self_data, scalar_t * src_data) const {
*self_data *= *src_data;
}
constexpr void operator() (bool * self_data, bool * src_data) const {
*self_data = *self_data && *src_data;
}
};
static ReduceMultiply reduce_multiply;
class ReduceAdd {
public:
template <typename scalar_t>
constexpr void operator() (scalar_t * self_data, scalar_t * src_data) const {
*self_data += *src_data;
}
};
static ReduceAdd reduce_add;
class TensorAssign {
public:
template <typename scalar_t>
constexpr void operator() (scalar_t * self_data, scalar_t * src_data) const {
*self_data = *src_data;
}
};
static TensorAssign tensor_assign;
template <bool is_scatter_like = true>
struct _cpu_scatter_gather_dim_loop {
template <typename scalar_t, typename func_t>
void operator()(
scalar_t* self_data, int64_t self_dim_stride,
int64_t* index_data, int64_t index_dim_stride,
scalar_t* src_data, int64_t src_dim_stride,
int64_t dim, int64_t index_dim_size,
int64_t index_upper_bound,
func_t& f
) {
for (const auto i : c10::irange(index_dim_size)) {
int64_t idx_dim = index_data[i * index_dim_stride];
// we are not putting idx_dim in the error message because it disables
// loop optimization in clang-7
TORCH_CHECK(idx_dim >= 0 && idx_dim < index_upper_bound,
"index ", index_data[i * index_dim_stride],
" is out of bounds for dimension ", dim,
" with size ", index_upper_bound
);
f(
self_data + (is_scatter_like ? idx_dim : i) * self_dim_stride,
src_data + (is_scatter_like ? i : idx_dim) * src_dim_stride
);
}
}
template <typename scalar_t, typename func_t>
void operator()(
scalar_t* self_data, int64_t self_dim_stride,
int64_t* index_data, int64_t index_dim_stride,
Scalar value,
int64_t dim, int64_t index_dim_size,
int64_t index_upper_bound,
func_t& f
) {
for (const auto i : c10::irange(index_dim_size)) {
int64_t idx_dim = index_data[i * index_dim_stride];
// we are not putting idx_dim in the error message because it disables
// loop optimization in clang-7
TORCH_CHECK(idx_dim >= 0 && idx_dim < index_upper_bound,
"index ", index_data[i * index_dim_stride],
" is out of bounds for dimension ", dim,
" with size ", index_upper_bound
);
auto temp = value.to<scalar_t>();
f(
self_data + (is_scatter_like ? idx_dim : i) * self_dim_stride, &temp
);
}
}
};
template <bool is_scatter_like = true>
struct cpu_scatter_gather_base_kernel {
template <typename func_t>
void operator()(const Tensor& self, int64_t dim,
const Tensor& index, const Scalar& value,
const std::string& method_name, func_t& kernel_func) {
auto index_sizes = ensure_nonempty_vec(index.sizes().vec());
auto index_strides = ensure_nonempty_vec(index.strides().vec());
// `dim` is traversed in the kernel,
// that is why index.stride(dim) = 0 and index.size(dim) = 1.
// Also, index.size(dim) = 1 makes sure that TensorIterator.DimCounter
// has the following form : (i_1,..., i_{dim-1}, 0, i_{dim+1},...,i_n).
index_sizes[dim] = 1;
index_strides[dim] = 0;
auto iter = TensorIteratorConfig()
.check_all_same_dtype(false)
.resize_outputs(false)
// NOLINTNEXTLINE(bugprone-argument-comment)
.declare_static_shape(index.sizes(), /*squash_dim=*/dim)
.add_output(self)
.add_input(index)
.build();
auto self_dim_stride = ensure_nonempty_stride(self, dim);
auto self_dim_size = ensure_nonempty_size(self, dim);
auto index_dim_stride = ensure_nonempty_stride(index, dim);
auto index_dim_size = ensure_nonempty_size(index, dim);
auto index_upper_bound = self_dim_size;
// since the index dimension is squashed, need to alter the grain size according
// to keep equal granularity in parallelism.
int64_t grain_size = std::max((int64_t) 1, at::internal::GRAIN_SIZE / index_dim_size);
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND3(
ScalarType::Bool, ScalarType::Half, ScalarType::BFloat16, iter.dtype(),
"scatter_gather_scalar_cpu", [&] {
constexpr auto SELF_ITER_STRIDE_IDX = 0;
constexpr auto INDEX_ITER_STRIDE_IDX = 1;
auto loop = [&](char** data, const int64_t* strides, int64_t n) {
auto* self_data_bytes = data[SELF_ITER_STRIDE_IDX];
auto* index_data_bytes = data[INDEX_ITER_STRIDE_IDX];
// we change the order of TensorIterator-dim loop
// vs dim-TensorIterator loop order depending on
// whether dim is the last dimension
if (dim== self.dim() - 1) {
for (const auto nelem : c10::irange(n)) {
(void)nelem; //Suppress unused variable warning
// dim loop is a separate code block
// for better performance
_cpu_scatter_gather_dim_loop<is_scatter_like>()(
(scalar_t*)self_data_bytes, self_dim_stride,
(int64_t*)index_data_bytes, index_dim_stride,
value, dim, index_dim_size, index_upper_bound,
kernel_func);
self_data_bytes += strides[SELF_ITER_STRIDE_IDX];
index_data_bytes += strides[INDEX_ITER_STRIDE_IDX];
}
}
else {
for (const auto i : c10::irange(index_dim_size)) {
auto* self_data = self_data_bytes;
auto* index_data = (char*)((int64_t*)index_data_bytes + i * index_dim_stride);
for (const auto nelem : c10::irange(n)) {
(void)nelem; //Suppress unused variable warning
int64_t idx_dim = *(int64_t*)index_data;
// we are not putting idx_dim in the error message because it disables
// loop optimization in clang-7
TORCH_CHECK(idx_dim >= 0 && idx_dim < index_upper_bound,
"index ", *(int64_t*)index_data,
" is out of bounds for dimension ", dim,
" with size ", index_upper_bound);
auto temp = value.to<scalar_t>();
kernel_func((scalar_t*)self_data + (is_scatter_like ? idx_dim : i) * self_dim_stride, &temp);
self_data += strides[SELF_ITER_STRIDE_IDX];
index_data += strides[INDEX_ITER_STRIDE_IDX];
}
}
}
};
iter.for_each(loop, grain_size);
}
);
}
template <typename func_t>
void operator()(const Tensor& self, int64_t dim,
const Tensor& index, const Tensor& src,
const std::string& method_name, func_t& kernel_func) {
auto iter = TensorIteratorConfig()
.check_all_same_dtype(false)
.resize_outputs(false)
// NOLINTNEXTLINE(bugprone-argument-comment)
.declare_static_shape(index.sizes(), /*squash_dim=*/dim)
.add_output(self)
.add_input(src)
.add_input(index)
.build();
auto self_dim_stride = ensure_nonempty_stride(self, dim);
auto self_dim_size = ensure_nonempty_size(self, dim);
auto index_dim_stride = ensure_nonempty_stride(index, dim);
auto index_dim_size = ensure_nonempty_size(index, dim);
auto src_dim_stride = ensure_nonempty_stride(src, dim);
auto src_dim_size = ensure_nonempty_size(src, dim);
auto index_upper_bound = is_scatter_like ? self_dim_size : src_dim_size;
int64_t grain_size = std::max((int64_t) 1, at::internal::GRAIN_SIZE / index_dim_size);
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND3(
ScalarType::Bool, ScalarType::Half, ScalarType::BFloat16, iter.dtype(),
"scatter_gather_tensor_cpu", [&] {
constexpr auto SELF_ITER_STRIDE_IDX = 0;
constexpr auto INDEX_ITER_STRIDE_IDX = 2;
constexpr auto SRC_ITER_STRIDE_IDX = 1;
auto loop = [&](char** data, const int64_t* strides, int64_t n) {
auto* self_data_bytes = data[SELF_ITER_STRIDE_IDX];
auto* index_data_bytes = data[INDEX_ITER_STRIDE_IDX];
auto* src_data_bytes = data[SRC_ITER_STRIDE_IDX];
// we change the order of TensorIterator-dim loop
// vs dim-TensorIterator loop order depending on
// whether dim is the last dimension
if (dim== self.dim() - 1) {
for (const auto nelem : c10::irange(n)) {
(void)nelem; //Suppress unused variable warning
// dim loop is a separate code block
// for better performance
_cpu_scatter_gather_dim_loop<is_scatter_like>()(
(scalar_t*)self_data_bytes, self_dim_stride,
(int64_t*)index_data_bytes, index_dim_stride,
(scalar_t*)src_data_bytes, src_dim_stride,
dim, index_dim_size, index_upper_bound,
kernel_func
);
self_data_bytes += strides[SELF_ITER_STRIDE_IDX];
index_data_bytes += strides[INDEX_ITER_STRIDE_IDX];
src_data_bytes += strides[SRC_ITER_STRIDE_IDX];
}
}
else {
for (const auto i : c10::irange(index_dim_size)) {
auto* self_data = self_data_bytes;
auto* index_data = (char*)((int64_t*)index_data_bytes + i * index_dim_stride);
auto* src_data = src_data_bytes;
for (const auto nelem : c10::irange(n)) {
(void)nelem; //Suppress unused variable warning
int64_t idx_dim = *(int64_t*)index_data;
// we are not putting idx_dim in the error message because it disables
// loop optimization in clang-7
TORCH_CHECK(idx_dim >= 0 && idx_dim < index_upper_bound,
"index ", *(int64_t*)index_data,
" is out of bounds for dimension ", dim,
" with size ", index_upper_bound);
kernel_func(
(scalar_t*)self_data + (is_scatter_like ? idx_dim : i) * self_dim_stride,
(scalar_t*)src_data + (is_scatter_like ? i : idx_dim) * src_dim_stride);
self_data += strides[SELF_ITER_STRIDE_IDX];
index_data += strides[INDEX_ITER_STRIDE_IDX];
src_data += strides[SRC_ITER_STRIDE_IDX];
}
}
}
};
iter.for_each(loop, grain_size);
}
);
}
};
void gather_cpu_kernel(const Tensor& result, const Tensor& self, int64_t dim, const Tensor& index) {
cpu_scatter_gather_base_kernel</*is_scatter_like=*/false>()(
result, dim, index, self,
"gather_out_cpu", tensor_assign);
}
void scatter_cpu_kernel(const Tensor& self, int64_t dim, const Tensor& index, const Tensor& src) {
cpu_scatter_gather_base_kernel<>()(
self, dim, index, src, "scatter_cpu_", tensor_assign);
}
void scatter_fill_cpu_kernel(const Tensor& self, int64_t dim, const Tensor& index, const Scalar& value) {
cpu_scatter_gather_base_kernel<>()(
self, dim, index, value, "scatter_fill_cpu_", tensor_assign);
}
void scatter_add_cpu_kernel(const Tensor& self, int64_t dim, const Tensor& index, const Tensor& src) {
cpu_scatter_gather_base_kernel<>()(
self, dim, index, src,
"scatter_add_", reduce_add);
}
void scatter_reduce_cpu_kernel(const Tensor& self, const int64_t dim, const Tensor& index,
const Tensor& src, const SCATTER_GATHER_OP& reduce) {
switch (reduce) {
case SCATTER_GATHER_OP::REDUCE_ADD :
cpu_scatter_gather_base_kernel<>()(self, dim, index, src,
"scatter_reduce_add_", reduce_add);
break;
case SCATTER_GATHER_OP::REDUCE_MULTIPLY :
cpu_scatter_gather_base_kernel<>()(self, dim, index, src,
"scatter_reduce_multiply_", reduce_multiply);
break;
}
}
void scatter_scalar_reduce_cpu_kernel(const Tensor& self, const int64_t dim, const Tensor& index,
const Scalar& value, const SCATTER_GATHER_OP& reduce) {
switch (reduce) {
case SCATTER_GATHER_OP::REDUCE_ADD :
cpu_scatter_gather_base_kernel<>()(self, dim, index, value,
"scatter_scalar_reduce_add_", reduce_add);
break;
case SCATTER_GATHER_OP::REDUCE_MULTIPLY :
cpu_scatter_gather_base_kernel<>()(self, dim, index, value,
"scatter_scalar_reduce_multiply_", reduce_multiply);
break;
}
}
} // anonymous namespace
REGISTER_DISPATCH(gather_stub, &gather_cpu_kernel);
REGISTER_DISPATCH(scatter_stub, &scatter_cpu_kernel);
REGISTER_DISPATCH(scatter_fill_stub, &scatter_fill_cpu_kernel);
REGISTER_DISPATCH(scatter_add_stub, &scatter_add_cpu_kernel);
REGISTER_DISPATCH(scatter_reduce_stub, &scatter_reduce_cpu_kernel);
REGISTER_DISPATCH(scatter_scalar_reduce_stub, &scatter_scalar_reduce_cpu_kernel);
}} // namespace at::native