forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
DilatedMaxPool3d.cu
530 lines (467 loc) · 17.1 KB
/
DilatedMaxPool3d.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/core/Tensor.h>
#include <ATen/AccumulateType.h>
#include <ATen/ceil_div.h>
#include <ATen/Dispatch.h>
#include <ATen/NamedTensorUtils.h>
#include <ATen/NumericUtils.h>
#include <ATen/native/Pool.h>
#include <ATen/cuda/Atomic.cuh>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/NumericLimits.cuh>
#include <ATen/cuda/detail/TensorInfo.cuh>
#include <ATen/cuda/detail/IndexUtils.cuh>
#include <ATen/cuda/detail/KernelUtils.h>
#include <c10/macros/Macros.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#include <ATen/NativeFunctions.h>
#else
#include <ATen/ops/empty.h>
#include <ATen/ops/max_pool3d_with_indices_native.h>
#include <ATen/ops/max_pool3d_with_indices_backward_native.h>
#include <ATen/ops/zeros_like.h>
#endif
namespace at {
namespace native {
namespace {
__device__ inline int min(int a, int b) {
return a <= b ? a : b;
}
template <typename scalar_t>
__global__ static void max_pool3d_with_indices_single_out_frame(
scalar_t* inputData,
PackedTensorAccessor64<scalar_t, 4> output,
PackedTensorAccessor64<int64_t, 4> indices,
int itime, int iheight, int iwidth,
int kT, int kH, int kW,
int dT, int dH, int dW,
int pT, int pH, int pW,
int dilationT, int dilationH, int dilationW,
int offsetZ)
{
int oColumn = blockIdx.x * blockDim.x + threadIdx.x;
int oRow = blockIdx.y * blockDim.y + threadIdx.y;
int oFrame = (blockIdx.z + offsetZ) % output.size(1); // output frame/time
int64_t slice = (blockIdx.z + offsetZ) / output.size(1); // output slice/feature
// For int64_t data type, see https://github.com/pytorch/pytorch/issues/52822
if (oRow < output.size(2) && oColumn < output.size(3))
{
int tStart = oFrame * dT - pT;
int hStart = oRow * dH - pH;
int wStart = oColumn * dW - pW;
int tEnd = min(tStart + (kT - 1) * dilationT + 1, itime);
int hEnd = min(hStart + (kH - 1) * dilationH + 1, iheight);
int wEnd = min(wStart + (kW - 1) * dilationW + 1, iwidth);
while(tStart < 0)
tStart += dilationT;
while(hStart < 0)
hStart += dilationH;
while(wStart < 0)
wStart += dilationW;
int maxIndex = tStart * iheight * iwidth + hStart * iwidth + wStart;
inputData += slice * itime * iheight * iwidth;
scalar_t max = at::numeric_limits<scalar_t>::lower_bound(); // -Infinity
for (int t = tStart; t < tEnd; t += dilationT)
{
for (int h = hStart; h < hEnd; h += dilationH)
{
for (int w = wStart; w < wEnd; w += dilationW)
{
int index = t * iheight * iwidth + h * iwidth + w;
scalar_t val = inputData[index];
if ((max < val) || at::_isnan(val))
{
max = val;
maxIndex = index;
}
}
}
}
output[slice][oFrame][oRow][oColumn] = max;
indices[slice][oFrame][oRow][oColumn] = maxIndex;
}
}
template <typename scalar_t>
void max_pool3d_with_indices_out_frame(
scalar_t* input_data,
const Tensor& output,
const Tensor& indices,
int totalZ,
int itime, int iheight, int iwidth,
int otime, int oheight, int owidth,
int kT, int kH, int kW,
int dT, int dH, int dW,
int pT, int pH, int pW,
int dilationT, int dilationH, int dilationW)
{
int offsetZ = 0;
dim3 block(32, 8);
while (totalZ > 0) {
dim3 grid(ceil_div(owidth, static_cast<int>(block.x)),
ceil_div(oheight, static_cast<int>(block.y)),
totalZ > 65535 ? 65535 : totalZ);
max_pool3d_with_indices_single_out_frame
<<<grid, block, 0, at::cuda::getCurrentCUDAStream()>>>(
input_data,
output.packed_accessor64<scalar_t, 4>(),
indices.packed_accessor64<int64_t, 4>(),
itime, iheight, iwidth,
kT, kH, kW,
dT, dH, dW,
pT, pH, pW,
dilationT, dilationH, dilationW,
offsetZ);
C10_CUDA_KERNEL_LAUNCH_CHECK();
totalZ -= 65535;
offsetZ += 65535;
}
}
#undef UPDATE_OUTPUT_KERNEL_WIDTH
template <typename scalar_t>
__global__ static void max_pool3d_with_indices_backward_single_out_frame(
scalar_t *gradInputData,
PackedTensorAccessor64<scalar_t, 4> gradOutput,
PackedTensorAccessor64<int64_t, 4> indices,
int itime, int iheight, int iwidth,
int dT, int dH, int dW,
int pT, int pH, int pW,
int dilationT, int dilationH,
int offsetZ)
{
int oColumn = blockIdx.x * blockDim.x + threadIdx.x;
int oRow = blockIdx.y * blockDim.y + threadIdx.y;
int oFrame = (blockIdx.z + offsetZ) % gradOutput.size(1); // output frame/time
int slice = (blockIdx.z + offsetZ) / gradOutput.size(1); // output slice/feature
if (oRow < gradOutput.size(2) && oColumn < gradOutput.size(3))
{
int maxIndex = indices[slice][oFrame][oRow][oColumn];
if (maxIndex != -1) {
gpuAtomicAddNoReturn(&gradInputData[slice * itime * iheight * iwidth + maxIndex],
gradOutput[slice][oFrame][oRow][oColumn]);
}
}
}
template <typename scalar_t>
void max_pool3d_with_indices_backward_out_frame(
scalar_t *gradInputData,
const Tensor& gradOutput,
const Tensor& indices,
int64_t totalZ,
int itime, int iheight, int iwidth,
int oheight, int owidth,
int dT, int dH, int dW,
int pT, int pH, int pW,
int dilationT, int dilationH)
{
int offsetZ = 0;
dim3 block(32, 8);
while (totalZ > 0) {
dim3 grid(ceil_div(owidth, static_cast<int>(block.x)),
ceil_div(oheight, static_cast<int>(block.y)),
totalZ > 65535 ? 65535 : totalZ);
max_pool3d_with_indices_backward_single_out_frame
<<<grid, block, 0, at::cuda::getCurrentCUDAStream()>>>(
gradInputData,
gradOutput.packed_accessor64<scalar_t, 4>(),
indices.packed_accessor64<int64_t, 4>(),
itime, iheight, iwidth,
dT, dH, dW,
pT, pH, pW,
dilationT, dilationH,
offsetZ);
C10_CUDA_KERNEL_LAUNCH_CHECK();
totalZ -= 65535;
offsetZ += 65535;
}
}
void max_pool3d_with_indices_out_cuda_template(
Tensor& output,
Tensor& indices,
const Tensor& input,
IntArrayRef kernel_size,
IntArrayRef stride,
IntArrayRef padding,
IntArrayRef dilation,
bool ceil_mode)
{
TensorArg output_arg{ output, "output", 1 };
TensorArg indices_arg{ indices, "indices", 2 };
TensorArg input_arg{ input, "input", 3 };
checkAllSameGPU(__func__,
{output_arg, indices_arg, input_arg});
// #20866, #22032: Guarantee this for the official C++ API?
TORCH_CHECK(kernel_size.size() == 1 || kernel_size.size() == 3,
"max_pool3d: kernel_size must either be a single int, or a tuple of three ints")
const int kT = safe_downcast<int, int64_t>(kernel_size[0]);
const int kH = kernel_size.size() == 1 ? kT : safe_downcast<int, int64_t>(kernel_size[1]);
const int kW = kernel_size.size() == 1 ? kT : safe_downcast<int, int64_t>(kernel_size[2]);
TORCH_CHECK(stride.size() == 0 || stride.size() == 1 || stride.size() == 3,
"max_pool3d: stride must either be omitted, a single int, or a tuple of three ints")
const int dT = stride.empty() ? kT : safe_downcast<int, int64_t>(stride[0]);
const int dH = stride.empty() ? kH :
stride.size() == 1 ? dT : safe_downcast<int, int64_t>(stride[1]);
const int dW = stride.empty() ? kW :
stride.size() == 1 ? dT : safe_downcast<int, int64_t>(stride[2]);
TORCH_CHECK(padding.size() == 1 || padding.size() == 3,
"max_pool3d: padding must be either be a single int, or a tuple of three ints");
const int pT = safe_downcast<int, int64_t>(padding[0]);
const int pH = padding.size() == 1 ? pT : safe_downcast<int, int64_t>(padding[1]);
const int pW = padding.size() == 1 ? pT : safe_downcast<int, int64_t>(padding[2]);
TORCH_CHECK(dilation.size() == 1 || dilation.size() == 3,
"max_pool3d: dilation must be either a single int, or a tuple of three ints");
const int dilationT = safe_downcast<int, int64_t>(dilation[0]);
const int dilationH = dilation.size() == 1 ? dilationT : safe_downcast<int, int64_t>(dilation[1]);
const int dilationW = dilation.size() == 1 ? dilationT : safe_downcast<int, int64_t>(dilation[2]);
const int64_t nbatch = input.ndimension() == 5 ? input.size(-5) : 1;
const int64_t nslices = input.size(-4);
const int64_t itime = input.size(-3);
const int64_t iheight = input.size(-2);
const int64_t iwidth = input.size(-1);
const int64_t otime = pooling_output_shape<int64_t>(itime, kT, pT, dT, dilationT, ceil_mode);
const int64_t oheight = pooling_output_shape<int64_t>(iheight, kH, pH, dH, dilationH, ceil_mode);
const int64_t owidth = pooling_output_shape<int64_t>(iwidth, kW, pW, dW, dilationW, ceil_mode);
pool3d_shape_check(
input,
nslices,
kT, kH, kW,
dT, dH, dW,
pT, pH, pW,
dilationT, dilationH, dilationW,
itime, iheight, iwidth,
otime, oheight, owidth,
"max_pool3d_with_indices_out_cuda_template()");
if (input.ndimension() == 4) {
output.resize_({ nslices, otime, oheight, owidth});
indices.resize_({nslices, otime, oheight, owidth});
}
else {
output.resize_({nbatch, nslices, otime, oheight, owidth});
indices.resize_({nbatch, nslices, otime, oheight, owidth});
}
if (input.numel() == 0) {
return;
}
Tensor work_input = input.contiguous();
Tensor work_output = output;
Tensor work_indices = indices;
if (input.ndimension() == 5) {
// Collapse batch and feature dimensions.
work_input = work_input.reshape({nbatch * nslices, itime, iheight, iwidth});
work_output = work_output.reshape({nbatch * nslices, otime, oheight, owidth});
work_indices = work_indices.reshape({nbatch * nslices, otime, oheight, owidth});
}
AT_DISPATCH_FLOATING_TYPES_AND2(kHalf, kBFloat16,
input.scalar_type(),
"max_pool3d_with_indices_out_frame",
[&]{
scalar_t *input_data = work_input.data_ptr<scalar_t>();
int64_t totalZ = otime * nslices * nbatch;
max_pool3d_with_indices_out_frame(
input_data, work_output, work_indices,
totalZ,
itime, iheight, iwidth,
otime, oheight, owidth,
kT, kH, kW,
dT, dH, dW,
pT, pH, pW,
dilationT, dilationH, dilationW);
}
);
}
void max_pool3d_with_indices_backward_out_cuda_template(
Tensor& gradInput,
const Tensor& gradOutput,
const Tensor& input,
const Tensor& indices,
IntArrayRef kernel_size,
IntArrayRef stride,
IntArrayRef padding,
IntArrayRef dilation,
bool ceil_mode)
{
TensorArg gradInput_arg{ gradInput, "gradInput", 1 };
TensorArg gradOutput_arg{ gradOutput, "gradOutput", 2 };
TensorArg input_arg{ input, "input", 3 };
TensorArg indices_arg{ indices, "indices", 4 };
checkAllSameGPU(__func__,
{gradInput_arg, gradOutput_arg, input_arg, indices_arg});
// #20866, #22032: Guarantee this for the official C++ API?
TORCH_CHECK(kernel_size.size() == 1 || kernel_size.size() == 3,
"max_pool3d: kernel_size must either be a single int, or a tuple of three ints")
const int kT = safe_downcast<int, int64_t>(kernel_size[0]);
const int kH = kernel_size.size() == 1 ? kT : safe_downcast<int, int64_t>(kernel_size[1]);
const int kW = kernel_size.size() == 1 ? kT : safe_downcast<int, int64_t>(kernel_size[2]);
TORCH_CHECK(stride.size() == 0 || stride.size() == 1 || stride.size() == 3,
"max_pool3d: stride must either be omitted, a single int, or a tuple of three ints")
const int dT = stride.empty() ? kT : safe_downcast<int, int64_t>(stride[0]);
const int dH = stride.empty() ? kH :
stride.size() == 1 ? dT : safe_downcast<int, int64_t>(stride[1]);
const int dW = stride.empty() ? kW :
stride.size() == 1 ? dT : safe_downcast<int, int64_t>(stride[2]);
TORCH_CHECK(padding.size() == 1 || padding.size() == 3,
"max_pool3d: padding must be either be a single int, or a tuple of three ints");
const int pT = safe_downcast<int, int64_t>(padding[0]);
const int pH = padding.size() == 1 ? pT : safe_downcast<int, int64_t>(padding[1]);
const int pW = padding.size() == 1 ? pT : safe_downcast<int, int64_t>(padding[2]);
TORCH_CHECK(dilation.size() == 1 || dilation.size() == 3,
"max_pool3d: dilation must be either a single int, or a tuple of three ints");
const int dilationT = safe_downcast<int, int64_t>(dilation[0]);
const int dilationH = dilation.size() == 1 ? dilationT : safe_downcast<int, int64_t>(dilation[1]);
const int dilationW = dilation.size() == 1 ? dilationT : safe_downcast<int, int64_t>(dilation[2]);
TORCH_CHECK((input.ndimension() == 4 || input.ndimension() == 5),
"max_pool2d_with_indices_backward_out_cuda_template(): ",
"Expected 4D or 5D input tensor, but got ", input.sizes());
TORCH_CHECK((gradOutput.ndimension() == 4 || gradOutput.ndimension() == 5),
"max_pool2d_with_indices_backward_out_cuda_template(): ",
"Expected 4D or 5D gradOutput tensor, but got ", gradOutput.sizes());
// Resize and initialize result tensor.
gradInput.resize_as_(input);
gradInput.zero_();
const int64_t nbatch = input.ndimension() == 5 ? input.size(-5) : 1;
const int64_t nslices = input.size(-4);
const int64_t otime = gradOutput.size(-3);
const int64_t oheight = gradOutput.size(-2);
const int64_t owidth = gradOutput.size(-1);
const int64_t itime = gradInput.size(-3);
const int64_t iheight = gradInput.size(-2);
const int64_t iwidth = gradInput.size(-1);
max_pool3d_backward_shape_check(
input,
gradOutput,
indices,
nslices,
kT, kH, kW,
dT, dH, dW,
pT, pH, pW,
dilationT, dilationH, dilationW,
itime, iheight, iwidth,
otime, oheight, owidth,
"max_pool3d_with_indices_backward_out_cuda_template()");
if (gradOutput.numel() == 0) {
return;
}
Tensor work_grad_input = gradInput;
Tensor work_grad_output = gradOutput.contiguous();
Tensor work_indices = indices.contiguous();
if (input.ndimension() == 5) {
// Collapse batch and feature dimensions.
work_grad_input = work_grad_input.reshape({nbatch * nslices, itime, iheight, iwidth});
work_grad_output = work_grad_output.reshape({nbatch * nslices, otime, oheight, owidth});
work_indices = work_indices.reshape({nbatch * nslices, otime, oheight, owidth});
}
AT_DISPATCH_FLOATING_TYPES_AND2(kHalf, kBFloat16, input.scalar_type(),
"max_pool3d_with_indices_backward_out_frame",
[&] {
const int64_t totalZ = otime * nslices * nbatch;
scalar_t *grad_input_data = work_grad_input.data_ptr<scalar_t>();
max_pool3d_with_indices_backward_out_frame(
grad_input_data, work_grad_output, work_indices,
totalZ,
itime, iheight, iwidth,
oheight, owidth,
dT, dH, dW,
pT, pH, pW,
dilationT, dilationH);
}
);
}
} // namespace
std::tuple<Tensor&, Tensor&> max_pool3d_with_indices_out_cuda(const Tensor& input,
IntArrayRef kernel_size,
IntArrayRef stride,
IntArrayRef padding,
IntArrayRef dilation,
bool ceil_mode,
Tensor& output,
Tensor& indices)
{
max_pool3d_with_indices_out_cuda_template(
output,
indices,
input,
kernel_size,
stride,
padding,
dilation,
ceil_mode);
return std::tuple<Tensor&, Tensor&>(output, indices);
}
std::tuple<Tensor, Tensor> max_pool3d_with_indices_cuda(
const Tensor& input,
IntArrayRef kernel_size,
IntArrayRef stride,
IntArrayRef padding,
IntArrayRef dilation,
bool ceil_mode)
{
NoNamesGuard guard;
Tensor output = at::empty({0}, input.options());
Tensor indices = at::empty({0}, input.options().dtype(kLong));
max_pool3d_with_indices_out_cuda_template(
output,
indices,
input,
kernel_size,
stride,
padding,
dilation,
ceil_mode);
guard.reset();
namedinference::propagate_names(output, input);
namedinference::propagate_names(indices, input);
return std::tuple<Tensor, Tensor>(output, indices);
}
Tensor& max_pool3d_with_indices_backward_out_cuda(const Tensor& gradOutput,
const Tensor& input,
IntArrayRef kernel_size,
IntArrayRef stride,
IntArrayRef padding,
IntArrayRef dilation,
bool ceil_mode,
const Tensor& indices,
Tensor& gradInput)
{
// See Note [Writing Nondeterministic Operations]
// Nondeterministic because of atomicAdd usage
globalContext().alertNotDeterministic("max_pool3d_with_indices_backward_out_cuda");
max_pool3d_with_indices_backward_out_cuda_template(
gradInput,
gradOutput,
input,
indices,
kernel_size,
stride,
padding,
dilation,
ceil_mode);
return gradInput;
}
Tensor max_pool3d_with_indices_backward_cuda(
const Tensor& gradOutput,
const Tensor& input,
IntArrayRef kernel_size,
IntArrayRef stride,
IntArrayRef padding,
IntArrayRef dilation,
bool ceil_mode,
const Tensor& indices)
{
// See Note [Writing Nondeterministic Operations]
// Nondeterministic because of atomicAdd usage
globalContext().alertNotDeterministic("max_pool3d_with_indices_backward_cuda");
auto gradInput = at::zeros_like(input, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
max_pool3d_with_indices_backward_out_cuda_template(
gradInput,
gradOutput,
input,
indices,
kernel_size,
stride,
padding,
dilation,
ceil_mode);
return gradInput;
}
} // at::native
} // at