forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Indexing.cu
984 lines (859 loc) · 40.6 KB
/
Indexing.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
#include <ATen/native/TensorAdvancedIndexing.h>
#include <ATen/native/IndexingUtils.h>
#include <ATen/ATen.h>
#include <ATen/ceil_div.h>
#include <ATen/NativeFunctions.h>
#include <ATen/ExpandUtils.h>
#include <ATen/MemoryOverlap.h>
#include <ATen/native/TensorIterator.h>
#include <ATen/native/cuda/Loops.cuh>
#include <ATen/native/Resize.h>
#include <ATen/AccumulateType.h>
#include <ATen/cuda/detail/IndexUtils.cuh>
#include <ATen/cuda/Atomic.cuh>
#include <ATen/cuda/CUDAUtils.h>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/cub.h>
#include <c10/util/irange.h>
#include <c10/core/QScheme.h>
#include <limits>
#include <c10/macros/Macros.h>
namespace {
template <typename scalar_t, int SZ>
__global__ void indexing_backward_kernel(
int64_t* sorted_indices, int64_t* indices, scalar_t* grad_output, scalar_t* grad_weight,
int64_t numel, int64_t stride, int64_t stride_before, int64_t outer_dim, bool accumulate) {
//numel is total number of flattened indices, not expanded to dimensions that are not indexed.
//stride is the cumulative size of the not-indexed last dimensions
//stride_before is the stride of the dimension immediately preceding first indexed dimension
//if indexing starts from the 0th dimension, stride_before does not matter because blockIdx.z will be 0 in this case
//outer_dim is number of elements in the first unindexed dimensions
using accscalar_t = at::acc_type<scalar_t, true>;
// Each warp is responsible for an input into the LookupTable.
// If the preceding input has the same destination index as this input, then the warp
// exits immediately. The warp also processes subsequent inputs with the
// same value.
//
// Input Warp
// 1 <warp 1>
// 1 <warp 1> (<warp 2> exits without doing any work)
// 5 <warp 3>
// 8 <warp 4>
// Number of values processed by each thread (grain size)
for (int64_t z = blockIdx.z; z < outer_dim; z += gridDim.z){
int64_t idx = blockIdx.x * blockDim.y + threadIdx.y;
if (idx < numel
&& (idx == 0 || sorted_indices[idx] != sorted_indices[idx - 1])){
do {
int64_t start_feature = threadIdx.x + blockIdx.y * blockDim.x * SZ;
// if not accumulate, we only keep the last duplicate index so skip those before it
if (!accumulate && (idx < numel - 1) && sorted_indices[idx] == sorted_indices[idx + 1]) {
idx++;
continue;
}
const int64_t weight_row = ((int64_t) sorted_indices[idx]) * stride + z * stride_before;
const int64_t grad_row = ((int64_t) indices[idx]) * stride + z * numel * stride;
const accscalar_t scale = (accscalar_t)1.0;
accscalar_t gradient[SZ];
accscalar_t weight[SZ];
while (start_feature < stride) {
#pragma unroll
for (int ii = 0; ii < SZ; ii++) {
int64_t feature_dim = start_feature + ii * C10_WARP_SIZE;
if (feature_dim < stride) {
gradient[ii] = static_cast<accscalar_t>(grad_output[grad_row + feature_dim]);
if (accumulate) {
weight[ii] = static_cast<accscalar_t>(grad_weight[weight_row + feature_dim]);
}
}
}
#pragma unroll
for (int ii = 0; ii < SZ; ii++) {
if (accumulate) {
weight[ii] += gradient[ii] * scale;
} else {
weight[ii] = gradient[ii] * scale;
}
}
#pragma unroll
for (int ii = 0; ii < SZ; ii++) {
int64_t feature_dim = start_feature + ii * C10_WARP_SIZE;
if (feature_dim < stride) {
grad_weight[weight_row + feature_dim] = static_cast<scalar_t>(weight[ii]);
}
}
start_feature += gridDim.y * blockDim.x * SZ;
}
idx++;
} while (idx < numel && sorted_indices[idx] == sorted_indices[idx - 1]);
}
}
}
}
namespace at { namespace native {
static Tensor wrapIndexOnce(const Tensor & index, int64_t dim, int64_t dim_size, bool check_range=true) {
//we don't need to check range in backward - if there were out of bounds indices forward should already have errored out
if (index.numel() != 0 && check_range) {
auto max_idx = index.max().item<int64_t>();
auto min_idx = index.min().item<int64_t>();
if (max_idx >= dim_size) {
TORCH_CHECK_INDEX(false, "index ", max_idx, " is out of bounds for dimension ", dim, " with size ", dim_size);
}
if (min_idx < -dim_size) {
TORCH_CHECK_INDEX(false, "index ", min_idx, " is out of bounds for dimension ", dim, " with size ", dim_size);
}
}
return index.remainder(dim_size);
}
static std::vector<int64_t> computeLinearStride(const Tensor & tensor) {
// computes the stride as if tensor were contiguous
auto sizes = tensor.sizes();
std::vector<int64_t> stride(tensor.dim());
stride[tensor.dim() - 1] = 1;
std::partial_sum(sizes.rbegin(), sizes.rend() - 1, stride.rbegin() + 1, std::multiplies<int64_t>());
return stride;
}
static std::tuple<Tensor, int64_t, int64_t, int64_t>
computeLinearIndex(const Tensor & src, TensorList indices, bool check_range) {
auto strides = computeLinearStride(src);
const auto& device = src.options().device();
// Compute the linear index by multiplying the indexing tensors by the
// stride and summing them. All the indexing tensors have the same shape at
// this point. We also compute the number of dimensions before and after that
// are not being index.
Tensor linearIndex;
int64_t emptyBefore = 0, emptyAfter = 0, nElemBefore = 1, nElemAfter = 1, strideBefore =0;
for (const auto i: c10::irange(src.dim())) {
if (indices[i].defined()) {
// Cast index to the longType matching src's device
// This allows us to support ie indexing a cuda tensor with a cpu tensor
Tensor index = (wrapIndexOnce(indices[i], i, src.size(i), check_range) * strides[i]).to(device);
if (linearIndex.defined()) {
linearIndex += index;
} else {
linearIndex = index;
if (i>0) {
strideBefore = src.stride(i-1); // stride after undefined dimensions
}
}
} else if (linearIndex.defined()) {
emptyAfter++;
nElemAfter *= src.size(i);
} else {
emptyBefore++;
nElemBefore *= src.size(i);
}
}
return std::make_tuple(std::move(linearIndex), nElemBefore, strideBefore, nElemAfter);
}
static std::tuple<Tensor, Tensor, int64_t, int64_t, int64_t, std::vector<int64_t>> makeLinearIndex(Tensor self, const c10::List<c10::optional<at::Tensor>>& orig, bool check_range) {
checkIndexTensorTypes(orig);
// first expand BoolTensor (masks) or ByteTensor (masks) into 1 or more LongTensors
auto indices = expandTensors(self, orig);
// next broadcast all index tensors together
indices = expand_outplace(indices);
// add missing null Tensors so that it matches self.dim()
while (indices.size() < (size_t)self.dim()) {
indices.emplace_back();
}
// if the non-null indices are not all adjacent, transpose self and indices
// together so that they're adjacent at the front
std::vector<int64_t> inversePerm;
if (!hasContiguousSubspace(indices)) {
std::tie(self, indices, inversePerm) = transposeToFrontAndInvPerm(self, indices);
}
int64_t nElemBefore, strideBefore, nElemAfter;
Tensor linearIndex;
std::tie(linearIndex, nElemBefore, strideBefore, nElemAfter) = computeLinearIndex(self, indices, check_range);
return std::make_tuple(linearIndex, self, nElemBefore, strideBefore, nElemAfter, inversePerm);
}
void index_put_with_sort_kernel_thrust_helper(Tensor &linearIndex, Tensor &orig_indices, Tensor &sorted_indices, int64_t num_indices);
namespace {
int64_t largestIndex(const Tensor &self) {
int64_t result = 0;
for (const auto i: c10::irange(self.dim())) {
result += (self.sizes()[i] - 1) * self.strides()[i];
}
return result;
}
void index_put_with_sort_kernel(Tensor & self, const c10::List<c10::optional<Tensor>>& indices, const Tensor & value, bool accumulate, bool unsafe) {
if (indices.size() > (size_t)self.dim()) {
TORCH_CHECK_INDEX(false, "too many indices for tensor of dimension ", self.dim(), " (got ", indices.size(), ")");
}
if (!self.is_contiguous()) {
self = self.contiguous();
}
Tensor linearIndex, src, expandedValue = value;
int64_t nElemBefore, strideBefore, sliceSize;
std::vector<int64_t> inversePerm;
std::tie(linearIndex, src, nElemBefore, strideBefore, sliceSize, inversePerm) = makeLinearIndex(self, indices, !unsafe);
int64_t num_indices = linearIndex.numel();
if (expandedValue.numel() < num_indices * nElemBefore * sliceSize) {
auto expanded_size = at::DimVector(expandedValue.sizes());
auto size1 = expandedValue.sizes();
auto size2 = linearIndex.sizes();
if (are_expandable(size1, size2)) {
expanded_size = infer_size_dimvector(size1, size2);
}
if (nElemBefore > 1) {
expanded_size.insert(expanded_size.begin(), nElemBefore);
}
expandedValue = expandedValue.expand(expanded_size);
}
expandedValue = expandedValue.contiguous();
if (num_indices > 0 && sliceSize > 0) {
const bool permuted = !src.is_contiguous();
auto src_ = permuted ? src.contiguous() : src;
linearIndex = linearIndex.reshape(-1);
auto sorted_indices = at::empty_like(linearIndex, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
auto orig_indices = at::empty_like(linearIndex, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
linearIndex.divide_(sliceSize, "trunc");
// cub on CUDA <= 11.2 have a bug that for small sizes
// cub's sort can be much slower than thrust's merge sort
// this bug is fixed in CUDA 11.3
#if (defined(CUDA_VERSION) && CUDA_VERSION < 11030) || defined(USE_ROCM)
if (num_indices < 50000) {
index_put_with_sort_kernel_thrust_helper(linearIndex, orig_indices, sorted_indices, num_indices);
} else
#endif
{
// Sort the inputs into sorted with the corresponding indices
auto range = at::arange(num_indices, linearIndex.options());
// linearIndex can not be negative, and we take advantage of this
// fact to sort on less bits for better performance.
int64_t nbits = cuda::cub::get_num_bits(largestIndex(self) / sliceSize);
cuda::cub::radix_sort_pairs(
linearIndex.data_ptr<int64_t>(), sorted_indices.data_ptr<int64_t>(),
range.data_ptr<int64_t>(), orig_indices.data_ptr<int64_t>(),
num_indices, false, 0, nbits);
}
TORCH_INTERNAL_ASSERT(
linearIndex.numel()*sliceSize*nElemBefore == expandedValue.numel(),
"number of flattened indices did not match number of elements in the value tensor: ",
linearIndex.numel()*sliceSize*nElemBefore, " vs ", expandedValue.numel());
const int UNROLL = 4;
const int indices_per_block = 4;
dim3 grid(ceil_div(num_indices, (int64_t) indices_per_block),
std::min<int>(at::cuda::getCurrentDeviceProperties()->maxGridSize[1], ceil_div(sliceSize, (int64_t) (C10_WARP_SIZE*UNROLL))),
std::min(std::max<int>(1,nElemBefore), at::cuda::getCurrentDeviceProperties()->maxGridSize[2]));
dim3 block(C10_WARP_SIZE, indices_per_block);
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND3(at::ScalarType::Half, at::ScalarType::Bool, at::ScalarType::BFloat16,
expandedValue.scalar_type(), "indexing_backward", [&] {
indexing_backward_kernel<scalar_t, UNROLL><<<grid, block, 0, stream>>>(
sorted_indices.data_ptr<int64_t>(),
orig_indices.data_ptr<int64_t>(),
expandedValue.data_ptr<scalar_t>(),
src_.data_ptr<scalar_t>(),
num_indices,
sliceSize,
strideBefore,
nElemBefore,
accumulate);
C10_CUDA_KERNEL_LAUNCH_CHECK();
});
if (permuted) {
self.copy_(src_.permute(inversePerm));
}
}
}
REGISTER_CUDA_DISPATCH(index_put_with_sort_stub, &index_put_with_sort_kernel);
} //anonymous
// Check tensor dimensions for index operations, and return the slice size.
static ptrdiff_t getSliceSize(const Tensor & dst,
int dim,
const Tensor & index,
const Tensor & src)
{
const auto dstDims = dst.dim();
const auto srcDims = src.dim();
TORCH_CHECK(index.dim() <= 1, "Index must be vector or scalar");
ptrdiff_t dstSliceSize = 1;
TORCH_CHECK(dim >= 0 && dim < dstDims, "Indexing dim ", dim, " is out of bounds");
for (const auto d: c10::irange(dstDims)) {
if (d != dim) {
dstSliceSize *= dst.size(d);
}
}
TORCH_CHECK(dim < srcDims, "Indexing dim ", dim, " is out of bounds");
TORCH_CHECK(index.numel() == src.size(dim),
"length of src.size[dim] is not equal to length of indices");
ptrdiff_t srcSliceSize = 1;
bool mismatch = false;
if (dstDims != srcDims) mismatch = true;
for (const auto d: c10::irange(srcDims)) {
if (d != dim) {
srcSliceSize *= src.size(d);
if (!mismatch && dst.size(d) != src.size(d)) mismatch = true;
}
}
TORCH_CHECK(dstSliceSize == srcSliceSize,
"Source/destination tensor have different slice sizes (%ld vs %ld)",
dstSliceSize, srcSliceSize);
if (mismatch) {
TORCH_WARN_ONCE(
"Warning: source/destination slices have same size but different "
"shape for an index operation. This behavior is deprecated.\n");
}
return dstSliceSize;
}
// We prefer this kernel to avoid reloading index points if the number
// of indices is a small number.
// This kernel in fact works for all choices of problem size, but if
// the number of indices chosen is large, then the
// indexAddLargeIndex kernel is a better choice to increase
// parallelism.
template <typename T, typename IndicesType, typename IndexType, int DstDim, int SrcDim, int IdxDim>
__global__ void indexAddSmallIndex(cuda::detail::TensorInfo<T, IndexType> dst,
cuda::detail::TensorInfo<T, IndexType> src,
cuda::detail::TensorInfo<IndicesType, IndexType> indices,
int dstAddDim,
int srcAddDim,
IndexType innerSize,
int64_t dstAddDimSize,
T alpha) {
// In order to avoid reloading the index that we are copying, load
// it once to handle all of the points that are being selected, so
// it can be reused as much as possible. This kernel is chosen when
// this is a good choice (small number of chosen indices), since
// re-accessing indices in addition to src elements can be slow.
for (IndexType srcIndex = 0; srcIndex < indices.sizes[0]; ++srcIndex) {
// Lua indices begin at 1
IndexType dstIndex =
indices.data[cuda::detail::IndexToOffset<IndicesType, IndexType, IdxDim>::get(srcIndex, indices)];
CUDA_KERNEL_ASSERT(dstIndex < dstAddDimSize);
// We stride over the output ignoring the indexed dimension
// (innerSize), whose offset calculation is handled differently
for (IndexType linearIndex = blockIdx.x * blockDim.x + threadIdx.x;
linearIndex < innerSize;
linearIndex += gridDim.x * blockDim.x) {
IndexType dstOffset =
cuda::detail::IndexToOffset<T, IndexType, DstDim>::get(linearIndex, dst);
dstOffset += dstIndex * dst.strides[dstAddDim];
IndexType srcOffset =
cuda::detail::IndexToOffset<T, IndexType, SrcDim>::get(linearIndex, src);
srcOffset += srcIndex * src.strides[srcAddDim];
gpuAtomicAddNoReturn(&dst.data[dstOffset], src.data[srcOffset] * alpha);
}
}
}
// We prefer this kernel to balance parallelism across index points,
// if there are a large number of indices.
// This kernel in fact works for all choices of problem size, but if
// the number of indices chosen is small, then the
// indexAddSmallIndex kernel is a better choice to reduce memory
// accesses.
template <typename T, typename IndicesType, typename IndexType, int DstDim, int SrcDim, int IdxDim,
bool IndexIsMajor>
__global__ void indexAddLargeIndex(cuda::detail::TensorInfo<T, IndexType> dst,
cuda::detail::TensorInfo<T, IndexType> src,
cuda::detail::TensorInfo<IndicesType, IndexType> indices,
int dstAddDim,
int srcAddDim,
IndexType totalSize,
IndexType innerSize,
int64_t dstAddDimSize,
T alpha) {
// We stride over the output including the indexed dimension
// (totalSize), and calculate the destination index point based on that
for (IndexType linearIndex = blockIdx.x * blockDim.x + threadIdx.x;
linearIndex < totalSize;
linearIndex += gridDim.x * blockDim.x) {
IndexType srcIndex, elementInSlice;
if (IndexIsMajor) {
srcIndex = linearIndex / innerSize;
elementInSlice = linearIndex % innerSize;
}
else {
elementInSlice = linearIndex / innerSize;
srcIndex = linearIndex % innerSize;
}
// Lua indices begin at 1
IndexType dstIndex =
indices.data[cuda::detail::IndexToOffset<IndicesType, IndexType, IdxDim>::get(srcIndex, indices)];
CUDA_KERNEL_ASSERT(dstIndex < dstAddDimSize);
IndexType dstOffset =
cuda::detail::IndexToOffset<T, IndexType, DstDim>::get(elementInSlice, dst);
dstOffset += dstIndex * dst.strides[dstAddDim];
IndexType srcOffset =
cuda::detail::IndexToOffset<T, IndexType, SrcDim>::get(elementInSlice, src);
srcOffset += srcIndex * src.strides[srcAddDim];
gpuAtomicAddNoReturn(&dst.data[dstOffset], src.data[srcOffset] * alpha);
}
}
// Compare the stride between adjacent slices (sliceStride) with strides in the
// other dimensions (i.e., strides *inside* each slice).
//
// - Returns true if some dimension inside the slice has lower stride than
// sliceStride. The simplest example is a 2-D contiguous tensor with sliceDim
// == 0 (that is, each slice is a row).
//
// In this case, we choose the CUDA kernel that processes the data in
// "index-major order". For example, if thread count equals slice size, then
// all threads process slice #0 in lockstep, and then slice #1, and so on.
//
// - Otherwise (i.e., sliceStride has the lowest value), this function returns
// false. The simplest example is a 2-D contiguous tensor with sliceDim == 1
// (each slice is a column).
//
// In this case, we choose the CUDA kernel that processes the data in
// "elementInSlice-major order". For example, each thread can process element
// #0 of every slice, and then element #1 of every slice, and so on.
template <typename scalar_t>
bool indexShouldBeMajor(cuda::detail::TensorInfo<scalar_t, unsigned int> &info,
int sliceDim)
{
// The stride between adjacent slices (e.g., between element #0 of slice #100
// and element #0 of slice #101).
unsigned int sliceStride = info.strides[sliceDim];
for (const auto i: c10::irange(info.dims)) {
if (i != sliceDim && info.sizes[i] > 1 && info.strides[i] < sliceStride) {
return true;
}
}
return false;
}
void index_add_cuda_impl(const Tensor& self, int64_t dim, const Tensor& index, const Tensor& source, const Scalar& alpha, const Tensor& result) {
if (!result.is_same(self)) result.copy_(self);
// Scalars are treated as 1-d tensor
Tensor self_ = (result.dim() == 0) ? result.view(1) : result;
Tensor source_ = (source.dim() == 0) ? source.view(1) : source;
TORCH_CHECK(result.dim() <= MAX_TENSORINFO_DIMS, "tensor has too many (>", MAX_TENSORINFO_DIMS, ") dims");
TORCH_CHECK(source.dim() <= MAX_TENSORINFO_DIMS, "tensor has too many (>", MAX_TENSORINFO_DIMS, ") dims" );
TORCH_CHECK(index.dim() <= MAX_TENSORINFO_DIMS, "tensor has too many (>", MAX_TENSORINFO_DIMS, ") dims");
if (globalContext().deterministicAlgorithms()){
torch::List<c10::optional<Tensor>> indices;
indices.reserve(dim + 1);
for (const auto i: c10::irange(dim)) {
indices.emplace_back();
}
indices.emplace_back(index.to(at::kLong));
result.index_put_(indices, source * alpha, true);
return;
}
// The `source` is partitioned into two parts:
// -the size of each slice we are indexing, which is the
// total size of the tensor ignoring dimension `dim`;
// -the number of index we are choosing, which is the total size
// of the tensor `index`.
ptrdiff_t sliceSize = getSliceSize(self_, dim, index, source_);
ptrdiff_t sourceTotalSize = source.numel();
int64_t selfAddDimSize = self_.size(dim);
ptrdiff_t numIndex = index.numel();
if (sliceSize == 0) {
return;
}
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
bool indContig = index.is_contiguous();
int mpc = at::cuda::getCurrentDeviceProperties()->multiProcessorCount;
#define SMALL_INDEX(TENSOR_TYPE, INDICES_TYPE, TYPE, SELF_DIM, SOURCE_DIM, IDX_DIM) \
indexAddSmallIndex<TENSOR_TYPE, INDICES_TYPE, TYPE, SELF_DIM, SOURCE_DIM, IDX_DIM> \
<<<smallIndexGrid, smallIndexBlock, 0, stream>>>( \
selfInfo, sourceInfo, indexInfo, \
selfAddDim, sourceAddDim, sliceSize, selfAddDimSize, alpha_value); \
C10_CUDA_KERNEL_LAUNCH_CHECK();
#define LARGE_INDEX(TENSOR_TYPE, INDICES_TYPE, TYPE, \
SELF_DIM, SOURCE_DIM, IDX_DIM, IDX_IS_MAJOR) \
indexAddLargeIndex<TENSOR_TYPE, INDICES_TYPE, TYPE, \
SELF_DIM, SOURCE_DIM, IDX_DIM, IDX_IS_MAJOR> \
<<<largeIndexGrid, largeIndexBlock, 0, stream>>>( \
selfInfo, sourceInfo, indexInfo, \
selfAddDim, sourceAddDim, sourceTotalSize, \
(IDX_IS_MAJOR) ? sliceSize : numIndex, \
selfAddDimSize, alpha_value); \
C10_CUDA_KERNEL_LAUNCH_CHECK();
dim3 smallIndexGrid(std::min(ceil_div(sliceSize, (ptrdiff_t)128), (ptrdiff_t)(mpc * 8)));
dim3 smallIndexBlock(std::min(sliceSize, (ptrdiff_t)128));
dim3 largeIndexGrid(std::min(ceil_div(sourceTotalSize, (ptrdiff_t)128), (ptrdiff_t)(mpc * 8)));
dim3 largeIndexBlock(std::min(sourceTotalSize, (ptrdiff_t)128));
if (cuda::detail::canUse32BitIndexMath(result) &&
cuda::detail::canUse32BitIndexMath(source) &&
cuda::detail::canUse32BitIndexMath(index)) {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND3(at::ScalarType::Bool, at::ScalarType::Half, at::ScalarType::BFloat16, result.scalar_type(), "index_add", [&] {
cuda::detail::TensorInfo<scalar_t, unsigned int> selfInfo =
cuda::detail::getTensorInfo<scalar_t, unsigned int>(self_);
int selfAddDim = selfInfo.collapseDims(dim);
selfInfo.reduceDim(selfAddDim);
auto alpha_value = alpha.to<scalar_t>();
AT_DISPATCH_INDEX_TYPES(index.scalar_type(), "index_add_cuda_", [&] () {
auto sourceInfo =
cuda::detail::getTensorInfo<scalar_t, unsigned int>(source_);
int sourceAddDim = sourceInfo.collapseDims(dim);
sourceInfo.reduceDim(sourceAddDim);
auto indexInfo =
cuda::detail::getTensorInfo<index_t, unsigned int>(index);
indexInfo.collapseDims();
// A reasonable choice for when to have each thread iterate over
// index to choose
if (numIndex <= 16) {
if (selfInfo.dims == 1 && sourceInfo.dims == 1 && indContig) {
SMALL_INDEX(scalar_t, index_t, unsigned int, 1, 1, -2);
} else if (selfInfo.dims == 2 && sourceInfo.dims == 2 && indContig) {
SMALL_INDEX(scalar_t, index_t, unsigned int, 2, 2, -2);
} else if (selfInfo.dims == 3 && sourceInfo.dims == 3 && indContig) {
SMALL_INDEX(scalar_t, index_t, unsigned int, 3, 3, -2);
} else {
SMALL_INDEX(scalar_t, index_t, unsigned int, -1, -1, -1);
}
} else {
bool indexIsMajor = indexShouldBeMajor(selfInfo, selfAddDim);
if (selfInfo.dims == 1 && sourceInfo.dims == 1 && indContig) {
LARGE_INDEX(scalar_t, index_t, unsigned int, 1, 1, -2, true);
} else if (selfInfo.dims == 2 && sourceInfo.dims == 2 && indContig) {
if (indexIsMajor) {
LARGE_INDEX(scalar_t, index_t, unsigned int, 2, 2, -2, true);
} else {
LARGE_INDEX(scalar_t, index_t, unsigned int, 2, 2, -2, false);
}
} else if (selfInfo.dims == 3 && sourceInfo.dims == 3 && indContig) {
if (indexIsMajor) {
LARGE_INDEX(scalar_t, index_t, unsigned int, 3, 3, -2, true);
} else {
LARGE_INDEX(scalar_t, index_t, unsigned int, 3, 3, -2, false);
}
} else {
LARGE_INDEX(scalar_t, index_t, unsigned int, -1, -1, -1, true);
}
}
});
});
} else {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND3(at::ScalarType::Bool, at::ScalarType::Half, at::ScalarType::BFloat16, self.scalar_type(), "index_add", [&] {
cuda::detail::TensorInfo<scalar_t, uint64_t> selfInfo =
cuda::detail::getTensorInfo<scalar_t, uint64_t>(self_);
int selfAddDim = selfInfo.collapseDims(dim);
selfInfo.reduceDim(selfAddDim);
auto alpha_value = alpha.to<scalar_t>();
cuda::detail::TensorInfo<scalar_t, uint64_t> sourceInfo =
cuda::detail::getTensorInfo<scalar_t, uint64_t>(source_);
int sourceAddDim = sourceInfo.collapseDims(dim);
sourceInfo.reduceDim(sourceAddDim);
AT_DISPATCH_INDEX_TYPES(index.scalar_type(), "index_add_cuda_", [&] () {
cuda::detail::TensorInfo<index_t, uint64_t> indexInfo =
cuda::detail::getTensorInfo<index_t, uint64_t>(index);
indexInfo.collapseDims();
LARGE_INDEX(scalar_t, index_t, uint64_t, -1, -1, -1, true);
});
});
}
#undef SMALL_INDEX
#undef LARGE_INDEX
}
TORCH_IMPL_FUNC(index_add_cuda_out)
(const Tensor& self, int64_t dim, const Tensor& index, const Tensor& source, const Scalar& alpha, const Tensor& result) {
index_add_cuda_impl(self, dim, index, source, alpha, result);
}
namespace {
// We prefer this kernel to avoid reloading index points if the number
// of indices is a small number.
// This kernel in fact works for all choices of problem size, but if
// the number of indices chosen is large, then the
// indexSelectLargeIndex kernel is a better choice to increase
// parallelism.
template <typename T, typename IndicesType, typename IndexType, int DstDim, int SrcDim, int IdxDim>
__global__ void indexSelectSmallIndex(cuda::detail::TensorInfo<T, IndexType> dst,
cuda::detail::TensorInfo<T, IndexType> src,
cuda::detail::TensorInfo<IndicesType, IndexType> indices,
int dstSelectDim,
int srcSelectDim,
IndexType innerSize,
int64_t srcSelectDimSize) {
// In order to avoid reloading the index that we are copying, load
// it once to handle all of the points that are being selected, so
// it can be reused as much as possible. This kernel is chosen when
// this is a good choice (small number of chosen indices), since
// re-accessing indices in addition to src elements can be slow.
for (IndexType dstIndex = 0; dstIndex < indices.sizes[0]; ++dstIndex) {
IndexType srcIndex =
indices.data[cuda::detail::IndexToOffset<IndicesType, IndexType, IdxDim>::get(dstIndex, indices)];
CUDA_KERNEL_ASSERT(srcIndex < srcSelectDimSize);
// We stride over the output ignoring the indexed dimension
// (innerSize), whose offset calculation is handled differently
for (IndexType linearIndex = blockIdx.x * blockDim.x + threadIdx.x;
linearIndex < innerSize;
linearIndex += gridDim.x * blockDim.x) {
IndexType dstOffset =
cuda::detail::IndexToOffset<T, IndexType, DstDim>::get(linearIndex, dst);
dstOffset += dstIndex * dst.strides[dstSelectDim];
IndexType srcOffset =
cuda::detail::IndexToOffset<T, IndexType, SrcDim>::get(linearIndex, src);
srcOffset += srcIndex * src.strides[srcSelectDim];
dst.data[dstOffset] = src.data[srcOffset];
}
}
}
// We prefer this kernel to balance parallelism across index points,
// if there are a large number of indices.
// This kernel in fact works for all choices of problem size, but if
// the number of indices chosen is small, then the
// indexSelectSmallIndex kernel is a better choice to reduce memory
// accesses.
template <typename T, typename IndicesType, typename IndexType, int DstDim, int SrcDim, int IdxDim,
bool IndexIsMajor>
__global__ void indexSelectLargeIndex(cuda::detail::TensorInfo<T, IndexType> dst,
cuda::detail::TensorInfo<T, IndexType> src,
cuda::detail::TensorInfo<IndicesType, IndexType> indices,
int dstSelectDim,
int srcSelectDim,
IndexType totalSize,
IndexType innerSize,
int64_t srcSelectDimSize) {
// We stride over the output including the indexed dimension
// (totalSize), and calculate the destination index point based on that
for (IndexType linearIndex = blockIdx.x * blockDim.x + threadIdx.x;
linearIndex < totalSize;
linearIndex += gridDim.x * blockDim.x) {
IndexType dstIndex, elementInSlice;
if (IndexIsMajor) {
dstIndex = linearIndex / innerSize;
elementInSlice = linearIndex % innerSize;
}
else {
elementInSlice = linearIndex / innerSize;
dstIndex = linearIndex % innerSize;
}
IndexType srcIndex =
indices.data[cuda::detail::IndexToOffset<IndicesType, IndexType, IdxDim>::get(dstIndex, indices)];
CUDA_KERNEL_ASSERT(srcIndex < srcSelectDimSize);
IndexType dstOffset =
cuda::detail::IndexToOffset<T, IndexType, DstDim>::get(elementInSlice, dst);
dstOffset += dstIndex * dst.strides[dstSelectDim];
IndexType srcOffset =
cuda::detail::IndexToOffset<T, IndexType, SrcDim>::get(elementInSlice, src);
srcOffset += srcIndex * src.strides[srcSelectDim];
dst.data[dstOffset] = src.data[srcOffset];
}
}
namespace {
// When using a 0-dim scalar tensor, we need the legacy (THC) semantics of
// TensorInfo: Pretend that the scalar tensor is in fact a one-element vector.
template <typename T, typename IndexType>
cuda::detail::TensorInfo<T, IndexType>
tensorInfoLegacyIfScalar(cuda::detail::TensorInfo<T, IndexType> ti) {
if (ti.dims == 0) {
ti.dims = 1;
ti.sizes[0] = 1;
ti.strides[0] = 1;
}
return ti;
}
}
template <typename scalar_t>
void index_select_out_cuda_impl(
Tensor& out,
const Tensor& self,
long dim,
const Tensor& index) {
ptrdiff_t numIndices = index.numel();
int selfDims = self.dim() == 0 ? 1 : self.dim();
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
TORCH_CHECK(
index.dim() <= 1, "Index is supposed to be an empty tensor or a vector");
TORCH_CHECK(dim < selfDims, "Indexing dim is out of bounds");
std::vector<int64_t> newSize = self.sizes().vec();
if (self.dim() > 0) {
newSize[dim] = numIndices;
}
if (self.is_quantized()){
out = at::empty_quantized(newSize, out);
} else {
at::native::resize_output(out, newSize);
}
ptrdiff_t outTotalSize = out.numel();
if (outTotalSize == 0) {
return;
}
bool indContig = index.is_contiguous();
// The `self` is partitioned into two parts:
// -the size of each slice we are indexing, which is the
// total size of the tensor ignoring dimension `dim`;
// -the number of indices we are choosing, which is the total size
// of the tensor `indices`.
int64_t selfSelectDimSize = self.dim() == 0 ? 1 : self.size(dim);
ptrdiff_t sliceSize = outTotalSize / numIndices;
int mpc = at::cuda::getCurrentDeviceProperties()->multiProcessorCount;
#define SMALL_INDEX(TENSOR_TYPE, INDICES_TYPE, TYPE, DST_DIM, SRC_DIM, IDX_DIM) \
indexSelectSmallIndex<TENSOR_TYPE, INDICES_TYPE, TYPE, DST_DIM, SRC_DIM, IDX_DIM> \
<<<smallIndexGrid, smallIndexBlock, 0, stream>>>( \
outInfo, selfInfo, indicesInfo, \
outSelectDim, selfSelectDim, static_cast<TYPE>(sliceSize), \
selfSelectDimSize); \
C10_CUDA_KERNEL_LAUNCH_CHECK();
#define LARGE_INDEX(TENSOR_TYPE, INDICES_TYPE, TYPE, \
DST_DIM, SRC_DIM, IDX_DIM, IDX_IS_MAJOR) \
indexSelectLargeIndex<TENSOR_TYPE, INDICES_TYPE, TYPE, \
DST_DIM, SRC_DIM, IDX_DIM, IDX_IS_MAJOR> \
<<<largeIndexGrid, largeIndexBlock, 0, stream>>>( \
outInfo, selfInfo, indicesInfo, \
outSelectDim, selfSelectDim, static_cast<TYPE>(outTotalSize), \
static_cast<TYPE>((IDX_IS_MAJOR) ? sliceSize : numIndices), \
selfSelectDimSize); \
C10_CUDA_KERNEL_LAUNCH_CHECK();
dim3 smallIndexGrid(std::min(ceil_div(sliceSize, (ptrdiff_t)128), (ptrdiff_t)(mpc * 8)));
dim3 smallIndexBlock(std::min(sliceSize, (ptrdiff_t)128));
dim3 largeIndexGrid(std::min(ceil_div(outTotalSize, (ptrdiff_t)128), (ptrdiff_t)(mpc * 8)));
dim3 largeIndexBlock(std::min(outTotalSize, (ptrdiff_t)128));
if (cuda::detail::canUse32BitIndexMath(out) &&
cuda::detail::canUse32BitIndexMath(self) &&
cuda::detail::canUse32BitIndexMath(index)) {
auto outInfo = tensorInfoLegacyIfScalar(cuda::detail::getTensorInfo<scalar_t, unsigned int>(out));
int outSelectDim = outInfo.collapseDims(dim);
outInfo.reduceDim(outSelectDim);
auto selfInfo = tensorInfoLegacyIfScalar(cuda::detail::getTensorInfo<scalar_t, unsigned int>(self));
int selfSelectDim = selfInfo.collapseDims(dim);
selfInfo.reduceDim(selfSelectDim);
AT_DISPATCH_INDEX_TYPES(index.scalar_type(), "index_select_out_cuda_impl", [&] () {
auto indicesInfo = tensorInfoLegacyIfScalar(cuda::detail::getTensorInfo<index_t, unsigned int>(index));
indicesInfo.collapseDims();
// A reasonable choice for when to have each thread iterate over
// indices to choose
if (numIndices <= 16) {
if (outInfo.dims == 1 && selfInfo.dims == 1 && indContig) {
SMALL_INDEX(scalar_t, index_t, unsigned int, 1, 1, -2);
} else if (outInfo.dims == 2 && selfInfo.dims == 2 && indContig) {
SMALL_INDEX(scalar_t, index_t, unsigned int, 2, 2, -2);
} else if (outInfo.dims == 3 && selfInfo.dims == 3 && indContig) {
SMALL_INDEX(scalar_t, index_t, unsigned int, 3, 3, -2);
} else {
SMALL_INDEX(scalar_t, index_t, unsigned int, -1, -1, -1);
}
} else {
bool indexIsMajor = indexShouldBeMajor(outInfo, outSelectDim);
if (outInfo.dims == 1 && selfInfo.dims == 1 && indContig) {
LARGE_INDEX(scalar_t, index_t, unsigned int, 1, 1, -2, true);
} else if (outInfo.dims == 2 && selfInfo.dims == 2 && indContig) {
if (indexIsMajor) {
LARGE_INDEX(scalar_t, index_t, unsigned int, 2, 2, -2, true);
} else {
LARGE_INDEX(scalar_t, index_t, unsigned int, 2, 2, -2, false);
}
} else if (outInfo.dims == 3 && selfInfo.dims == 3 && indContig) {
if (indexIsMajor) {
LARGE_INDEX(scalar_t, index_t, unsigned int, 3, 3, -2, true);
} else {
LARGE_INDEX(scalar_t, index_t, unsigned int, 3, 3, -2, false);
}
} else {
LARGE_INDEX(scalar_t, index_t, unsigned int, -1, -1, -1, true);
}
}
});
} else {
auto outInfo = tensorInfoLegacyIfScalar(cuda::detail::getTensorInfo<scalar_t, uint64_t>(out));
int outSelectDim = outInfo.collapseDims(dim);
outInfo.reduceDim(outSelectDim);
auto selfInfo = tensorInfoLegacyIfScalar(cuda::detail::getTensorInfo<scalar_t, uint64_t>(self));
int selfSelectDim = selfInfo.collapseDims(dim);
selfInfo.reduceDim(selfSelectDim);
AT_DISPATCH_INDEX_TYPES(index.scalar_type(), "index_select_out_cuda_impl", [&] () {
auto indicesInfo = tensorInfoLegacyIfScalar(cuda::detail::getTensorInfo<index_t, uint64_t>(index));
indicesInfo.collapseDims();
LARGE_INDEX(scalar_t, index_t, uint64_t, -1, -1, -1, true);
});
}
#undef SMALL_INDEX
#undef LARGE_INDEX
}
} // anonymous namespace
Tensor& index_select_out_cuda(
const Tensor& self,
int64_t dim,
const Tensor& index,
Tensor& out) {
static constexpr string_view DIM_WARNING =
"Tensor too large or too many (> 25) dimensions";
TORCH_CHECK(
at::cuda::check_device({out, self, index}),
"Input, output and indices must be on the current device");
at::assert_no_internal_overlap(out);
at::assert_no_overlap(out, self);
at::assert_no_overlap(out, index);
dim = at::maybe_wrap_dim(dim, self);
TORCH_CHECK(self.dim() <= MAX_TENSORINFO_DIMS, DIM_WARNING);
TORCH_CHECK(index.dim() <= MAX_TENSORINFO_DIMS, DIM_WARNING);
if (self.is_quantized()){
TORCH_CHECK(
self.qscheme() == kPerTensorAffine,
"Only per_tensor quantized quantized tensors are supported by index_select.")
AT_DISPATCH_QINT_TYPES(out.scalar_type(), "index_select_quant_cuda", [&] {
index_select_out_cuda_impl<scalar_t>(out, self, dim, index);
});
} else {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND3(
at::ScalarType::Half,
at::ScalarType::Bool,
at::ScalarType::BFloat16,
out.scalar_type(),
"index_select_cuda",
[&] { index_select_out_cuda_impl<scalar_t>(out, self, dim, index); });
}
return out;
}
Tensor index_select_cuda(const Tensor& self, int64_t dim, const Tensor& index) {
Tensor out = at::empty({0}, self.options());
at::native::index_select_out_cuda(self, dim, index, out);
return out;
}
Tensor index_select_quantized_cuda(const Tensor& self, int64_t dim, const Tensor& index) {
TORCH_CHECK(
self.qscheme() == kPerTensorAffine,
"Only per_tensor quantized quantized tensors are supported by index_select.")
Tensor out = at::empty_quantized({0}, self);
at::native::index_select_out_cuda(self, dim, index, out);
return out;
}
namespace {
template <typename mask_t>
void masked_fill_kernel(TensorIterator& iter, const Scalar& value) {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND3(
kBool, kHalf, kBFloat16, iter.common_dtype(), "masked_fill_", [&]() {
const auto value_ = value.to<scalar_t>();
gpu_kernel(
iter, [value_] GPU_LAMBDA(scalar_t self, mask_t mask) -> scalar_t {
if (mask) {
return value_;
}
return self;
});
});
}
} // anonymous namespace
Tensor & masked_fill__cuda(Tensor& self, const Tensor & mask, const Scalar& value) {
TORCH_CHECK(self.device() == mask.device(), "expected self and mask to be on the same device, but got mask on ",
mask.device(), " and self on ", self.device());
TORCH_CHECK(mask.scalar_type() == kByte || mask.scalar_type() == kBool,
"expected mask dtype to be Bool but got ", mask.scalar_type());
auto maybe_outnames = namedinference::broadcast_to_outnames(self, mask, "masked_fill_");
if (at::has_internal_overlap(self) == MemOverlap::YES) {
TORCH_WARN(
"Use of masked_fill_ on expanded tensors is deprecated. "
"Please clone() the tensor before performing this operation. "
"This also applies to advanced indexing e.g. tensor[mask] = scalar");
}
at::assert_no_partial_overlap(self, mask);
c10::MaybeOwned<Tensor> b_mask = expand_inplace(self, mask, "masked_fill_");
auto iter = TensorIteratorConfig()
.set_check_mem_overlap(false)
.check_all_same_dtype(false)
.resize_outputs(false)
.add_output(self)
.add_input(self)
.add_input(*b_mask)
.build();
if (b_mask->dtype() == at::ScalarType::Byte) {
TORCH_WARN("masked_fill_ received a mask with dtype torch.uint8, this behavior is now deprecated," \
"please use a mask with dtype torch.bool instead.");
masked_fill_kernel<uint8_t>(iter, value);
} else {
masked_fill_kernel<bool>(iter, value);
}
namedinference::propagate_names_if_nonempty(self, maybe_outnames);
return self;
}
Tensor & masked_fill__cuda(Tensor& self, const Tensor & mask, const Tensor & value) {
TORCH_CHECK(value.dim() == 0, "masked_fill_ only supports a 0-dimensional value tensor, but got tensor "
"with ", value.dim(), " dimension(s).");
return masked_fill__cuda(self, mask, value.item());
}
} // native
} // at