forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_native_functions.py
199 lines (147 loc) · 7.34 KB
/
test_native_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
# Owner(s): ["module: unknown"]
from typing import Optional, List
import torch
from torch.testing._internal.common_utils import TestCase, run_tests
# End-to-end tests of features in native_functions.yaml
class FloatListWrapperModule(torch.nn.Module):
def forward(self, values, incr: Optional[List[float]]):
return torch._C._nn._test_optional_floatlist(values, incr)
class IntListWrapperModule(torch.nn.Module):
def forward(self, values, incr: Optional[List[int]]):
return torch._C._nn._test_optional_intlist(values, incr)
class TestNativeFunctions(TestCase):
#
# optional float list
#
def do_test_optional_floatlist_with_module(self, module):
values = torch.tensor([1.5, 2.5], dtype=torch.float)
returned = module(values, None)
self.assertEqual(values, returned)
# Make sure that it's an alias, indicating that the operator saw a nullopt.
values[0] = 3.5
self.assertEqual(values, returned)
returned = module(values, [5.1, 4.1])
self.assertEqual(values, torch.tensor([3.5, 2.5], dtype=torch.float))
self.assertEqual(returned, torch.tensor([8.6, 6.6], dtype=torch.float))
def trace_optional_floatlist(self, const):
def wrapper(values):
return torch._C._nn._test_optional_floatlist(values, const)
return torch.jit.trace(wrapper, torch.tensor([1.5, 2.5], dtype=torch.float))
def test_optional_floatlist(self):
self.do_test_optional_floatlist_with_module(FloatListWrapperModule())
self.do_test_optional_floatlist_with_module(torch.jit.script(FloatListWrapperModule()))
traced_none = self.trace_optional_floatlist(None)
traced_list = self.trace_optional_floatlist([5.1, 4.1])
# Not really a module, just lets us use our two traced functions to handle
# the specific cases of passing None and [5.1, 4.1].
def fake_module(values, const):
if const is None:
return traced_none(values)
if const == [5.1, 4.1]:
return traced_list(values)
raise Exception("Invalid argument")
self.do_test_optional_floatlist_with_module(fake_module)
def test_optional_floatlist_invalid(self):
with self.assertRaisesRegex(TypeError, "must be tuple of floats, not list"):
FloatListWrapperModule()(torch.zeros(1), ["hi"])
with self.assertRaisesRegex(RuntimeError, "value of type .* instead found type"):
torch.jit.script(FloatListWrapperModule())(torch.zeros(1), ["hi"])
with self.assertRaisesRegex(TypeError, "must be .* Tensor"):
FloatListWrapperModule()(torch.zeros(1), torch.zeros(1))
with self.assertRaisesRegex(RuntimeError, "value of type .* instead found type"):
torch.jit.script(FloatListWrapperModule())(torch.zeros(1), torch.zeros(1))
#
# optional int list
#
def do_test_optional_intlist_with_module(self, module):
values = torch.tensor([1, 2], dtype=torch.int)
returned = module(values, None)
self.assertEqual(values, returned)
# Make sure that it's an alias, indicating that the operator saw a nullopt.
values[0] = 3
self.assertEqual(values, returned)
returned = module(values, [5, 4])
self.assertEqual(values, torch.tensor([3, 2], dtype=torch.int))
self.assertEqual(returned, torch.tensor([8, 6], dtype=torch.int))
def trace_optional_intlist(self, const):
def wrapper(values):
return torch._C._nn._test_optional_intlist(values, const)
return torch.jit.trace(wrapper, torch.tensor([1, 2], dtype=torch.int))
def test_optional_intlist(self):
self.do_test_optional_intlist_with_module(IntListWrapperModule())
self.do_test_optional_intlist_with_module(torch.jit.script(IntListWrapperModule()))
traced_none = self.trace_optional_intlist(None)
traced_list = self.trace_optional_intlist([5, 4])
# Not really a module, just lets us use our two traced functions to handle
# the specific cases of passing None and [5, 4].
def fake_module(values, const):
if const is None:
return traced_none(values)
if const == [5, 4]:
return traced_list(values)
raise Exception("Invalid argument")
self.do_test_optional_intlist_with_module(fake_module)
def test_optional_intlist_invalid(self):
with self.assertRaisesRegex(TypeError, "must be .* not"):
IntListWrapperModule()(torch.zeros(1), [0.5])
with self.assertRaisesRegex(RuntimeError, "value of type .* instead found type"):
torch.jit.script(IntListWrapperModule())(torch.zeros(1), [0.5])
with self.assertRaisesRegex(TypeError, "must be .* Tensor"):
IntListWrapperModule()(torch.zeros(1), torch.zeros(1))
with self.assertRaisesRegex(RuntimeError, "value of type .* instead found type"):
torch.jit.script(IntListWrapperModule())(torch.zeros(1), torch.zeros(1))
#
# optional filled int list
#
def do_test_optional_filled_intlist_with_module(self, module):
values = torch.tensor([1, 2], dtype=torch.int)
returned = module(values, None)
self.assertEqual(values, returned)
# Make sure that it's an alias, indicating that the operator saw a nullopt.
values[0] = 3
self.assertEqual(values, returned)
returned = module(values, 10)
self.assertEqual(values, torch.tensor([3, 2], dtype=torch.int))
self.assertEqual(returned, torch.tensor([13, 12], dtype=torch.int))
def trace_optional_filled_intlist(self, const):
def wrapper(values):
return torch._C._nn._test_optional_filled_intlist(values, const)
return torch.jit.trace(wrapper, torch.tensor([1, 2], dtype=torch.int))
def test_optional_filled_intlist(self):
def f(n: int):
x = torch._C._nn._test_optional_filled_intlist(torch.tensor([1, 1], dtype=torch.int), (n, n))
y = torch._C._nn._test_optional_filled_intlist(torch.tensor([1, 1], dtype=torch.int), n)
return x, y
# eager
returned = f(10)
self.assertEqual(returned[0], returned[1])
# scripted
s = torch.jit.script(f)
returned = s(10)
self.assertEqual(returned[0], returned[1])
# traced
traced_none = self.trace_optional_filled_intlist(None)
traced_int = self.trace_optional_filled_intlist(10)
# Not really a module, just lets us use our two traced functions to handle
# the specific cases of passing None and 10.
def fake_module(values, const):
if const is None:
return traced_none(values)
if const == 10:
return traced_int(values)
raise Exception("Invalid argument")
self.do_test_optional_filled_intlist_with_module(fake_module)
def test_string_defaults(self):
dummy = torch.rand(1)
fn = torch._C._nn._test_string_default
fn(dummy)
with self.assertRaisesRegex(RuntimeError, "A"):
fn(dummy, a="")
with self.assertRaisesRegex(RuntimeError, "B"):
fn(dummy, b="")
def f(x):
torch._C._nn._test_string_default(x)
scripted_fn = torch.jit.script(f)
scripted_fn(dummy)
if __name__ == '__main__':
run_tests()