forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
autograd_meta.cpp
241 lines (211 loc) · 9.68 KB
/
autograd_meta.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <c10/util/irange.h>
#include <torch/csrc/autograd/variable.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#else
#include <ATen/ops/_has_same_storage_numel.h>
#include <ATen/ops/_new_zeros_with_same_feature_meta.h>
#include <ATen/ops/zeros.h>
#endif
namespace torch {
namespace autograd {
using at::Tensor;
// [Forward Grad View/inplace]
// It is important to us to allow view and inplace to work with dual Tensors. These operations
// should either compute the right gradient or raise a user-friendly error.
// The basic case where all Tensors are dual Tensors is as follows:
// # Have:
// # foo is a dual Tensor that is not a view
// # bar is a dual Tensor of appropriate size (depending on cases) that is not a view
//
// # Case 1: no view
// foo.copy_(bar)
//
// # Case 2: with view, propagate from view to base
// view = foo[0]
// view.copy_(bar)
//
// # Case 3: with view, propagate from base to view
// view = foo[0]
// foo.copy_(bar)
//
// # In both cases, the forward grad of foo must be properly updated.
// # In the second and third cases, the forward grad of view must match
// # the one of foo for the subset they have in common.
//
// All these cases can be handled by the following layout constraint on the forward grad:
// - A Tensor and its forward grad (for all levels) must have the same metadata (size, stride
// and storage offset). Storage offset must be in this metadata because of as_strided.
// - View operations must create a forward grad that is a view of the base's forward grad.
// - Inplace operations must modify the input's forward grad inplace.
//
// This layout constraint is ensured in the `set_fw_grad` function below
// More complex cases arrise when non-dual Tensor interact with dual Tensors.
// The two most important cases are:
//
// # Have:
// # foo is a regular Tensor that is not a view
// # bar is a dual Tensor of appropriate size (depending on cases) that is not a view
//
// # Case 4: Changes on the view must propagate to its base
// view = foo[0]
// # view is still a regular Tensor here
// view.copy_(bar)
// # Now both view and foo are dual Tensor with appropriate forward grad
//
// # Case 5: Changes on the base must propagate on all its views
// view = foo[0]
// # view is still a regular Tensor here
// base.copy_(bar)
// # Now both view and foo are dual Tensor with appropriate forward grad
//
// # NB there is a case 6 involving changes on a view propagating to other views
// # but it is fully described by the two others and is skipped in this discussion.
//
// Case 4 is handled by set_fw_grad by properly setting the forward grad of the base if needed.
// Case 5 is handled in fw_grad by reading the forward grad from the base if needed.
namespace {
// Check if two Tensor have the same storage offset, sizes and strides
bool has_same_meta(const Variable& base, const Variable& other) {
if (!base.defined() || !other.defined()) {
return false;
}
if (base.storage_offset() != other.storage_offset()) {
return false;
}
if (base.dim() != other.dim()) {
return false;
}
for (const auto i : c10::irange(base.dim())) {
if (base.sizes()[i] != other.sizes()[i]) {
return false;
}
if (base.strides()[i] != other.strides()[i] && base.sizes()[i] != 1) {
return false;
}
}
if (!at::_has_same_storage_numel(base, other)) {
return false;
}
return true;
}
} // anonymous namespace
// This function is will ensure that the fw_grad_ is properly a view of the base for inplace ops on
// Tensors that do not have forward grad originally.
void AutogradMeta::set_fw_grad(const at::TensorBase& new_grad_base, const at::TensorBase& self_base, uint64_t level, bool is_inplace_op) {
TORCH_CHECK(!new_grad_base._fw_grad(level).defined(), "Setting a forward grad that "
"itself has a forward gradient at the same level", level, " is not supported.");
// Lazy initialization
{
std::lock_guard<std::mutex> lock(mutex_);
if (!fw_grad_) {
fw_grad_ = std::make_shared<ForwardGrad>();
}
}
if (fw_grad_->contains(level)) {
// Setting the forward grad again is only allowed if it is a no-op.
// We do allow this case to simplify writing codegen for inplace ops.
TORCH_INTERNAL_ASSERT(new_grad_base.defined(), "Cannot set a forward grad that is an undefined Tensor. Use "
"_fw_primal(level) to get a new Tensor with this forward grad unset.");
TORCH_INTERNAL_ASSERT(is_inplace_op, "Only inplace operations can re-set the forward grad of a Tensor that "
"already has one.");
TORCH_INTERNAL_ASSERT(fw_grad_->value(level).is_same(new_grad_base), "Cannot set a value of a forward grad if it "
"already exists. Inplace operations should modify it inplace.");
} else {
// TODO(alband) remove this spurious version counter bump
Tensor new_grad(new_grad_base);
at::OptionalTensorRef self_ref(self_base);
const Tensor &self = *self_ref;
TORCH_CHECK(self.is_same_size(new_grad), "Trying to set a forward gradient that has a different size than that "
"of the original Tensor, this is not supported. Tensor is of size ", self.sizes(), " while the given "
"forward gradient is of size ", new_grad.sizes(), ".");
if (is_inplace_op && is_view_) {
auto this_view_meta = static_cast<DifferentiableViewMeta*>(this);
// For inplace ops on a Tensor that does not already have a forward grad and is a view, we propagate
// the tangent to the base and ensure that the new_grad is a view of that base's tangent.
// This ensure that case 4 from [Forward Grad View/inplace] above works fine
// What happens in this long if statement is:
// - Check if the base already has a grad
// - If not, set a new fw_grad for it full of zeros
// - Take a view of the base's forward grad
// - Copy the given new_grad into this view
// - Use this view as the new new_grad
if (this_view_meta->has_fw_view()) {
auto view_info = this_view_meta->get_forward_view();
auto& base = view_info.base_;
if (!base._fw_grad(level).defined()) {
// Enforce same meta here to make sure that the view op below is always valid
Tensor new_base_fw_grad;
if (has_same_meta(new_grad, base) && has_same_meta(new_grad, self)) {
// TODO extend this special case to when the underlying storage of new_grad
// can be re-used.
new_base_fw_grad = new_grad;
} else {
new_base_fw_grad = at::_new_zeros_with_same_feature_meta(new_grad, base);
// Update new_grad to be a view of the base
Tensor new_fw_grad_value;
if (view_info.has_view_fn()) {
new_fw_grad_value = view_info.view_fn()(new_base_fw_grad);
} else {
new_fw_grad_value = new_base_fw_grad.as_strided(self.sizes(), self.strides(), self.storage_offset());
}
new_fw_grad_value.copy_(new_grad);
new_grad = new_fw_grad_value;
}
base._set_fw_grad(new_base_fw_grad, level, /* is_inplace_op */ false);
}
}
}
// Enforce the basic layout constraint
if (!has_same_meta(new_grad, self)) {
if (is_view_) {
auto this_view_meta = static_cast<DifferentiableViewMeta*>(this);
TORCH_INTERNAL_ASSERT(!this_view_meta->has_fw_view(),
"Expected the output of forward differentiable view operations to have the tangent have the same layout as primal")
}
auto res = at::_new_zeros_with_same_feature_meta(new_grad, self);
res.copy_(new_grad);
new_grad = res;
}
fw_grad_->set_value(new_grad, level);
}
}
const Variable& AutogradMeta::fw_grad(uint64_t level, const at::TensorBase& self) const {
// TLS that disables forward AD
// This is only used for custom Function implementation
if (!c10::AutogradState::get_tls_state().get_fw_grad_mode()) {
return ForwardGrad::undef_grad();
}
// Ensure that concurent fw_grad() "reads" are thread safe
std::lock_guard<std::mutex> lock(mutex_);
const auto& direct_fw_grad = fw_grad_ ? fw_grad_->value(level) : ForwardGrad::undef_grad();
if (!direct_fw_grad.defined() && is_view_) {
// For view that don't have a forward grad, check if their base has one that
// has been defined by an inplace operation.
// This ensure that case 5 from [Forward Grad View/inplace] above works fine
auto const_view_meta = static_cast<const torch::autograd::DifferentiableViewMeta*>(this);
// This is ok to do as we ONLY modify fw_grad_ and this field is properly locked in all methods
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
auto this_view_meta = const_cast<torch::autograd::DifferentiableViewMeta*>(const_view_meta);
if (this_view_meta->has_fw_view()) {
const auto& view_info = this_view_meta->get_forward_view();
const auto& base = view_info.base_;
const auto& base_val = base._fw_grad(level);
if (base_val.defined()) {
// Lazy initialization of fw_grad_
this_view_meta->fw_grad_ = std::make_shared<ForwardGrad>();
Variable new_val;
if (view_info.has_view_fn()) {
new_val = view_info.view_fn()(base_val);
} else {
new_val = base_val.as_strided(self.sizes(), self.strides(), self.storage_offset());
}
this_view_meta->fw_grad_->set_value(new_val, level);
return this_view_meta->fw_grad_->value(level);
}
}
}
return direct_fw_grad;
}
}} // torch::autograd