forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpybind_utils.cpp
351 lines (338 loc) · 12.8 KB
/
pybind_utils.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
#include <torch/csrc/jit/python/module_python.h>
#include <torch/csrc/jit/python/pybind_utils.h>
#include <torch/csrc/jit/python/python_dict.h>
#include <torch/csrc/jit/python/python_ivalue.h>
#include <torch/csrc/jit/python/python_list.h>
#include <c10/util/irange.h>
namespace torch {
namespace jit {
// This is a hack to remove instances deleted in C++ from the PyBind cache
// C++->Python. We need this because otherwise we may get the old Python object
// if C++ creates a new object at the memory location of the deleted object.
void clear_registered_instances(void* ptr) {
auto& registered_instances =
pybind11::detail::get_internals().registered_instances;
auto range = registered_instances.equal_range(ptr);
for (auto it = range.first; it != range.second; ++it) {
auto vh = it->second->get_value_and_holder();
vh.set_instance_registered(false);
}
registered_instances.erase(ptr);
}
IValue toIValue(py::handle obj, const TypePtr& type, c10::optional<int32_t> N) {
switch (type->kind()) {
case TypeKind::TensorType: {
if (obj.ptr() == Py_None) {
// None gets converted to undefined Tensors
return autograd::Variable();
}
auto var = py::cast<autograd::Variable>(obj);
guardAgainstNamedTensor<autograd::Variable>(var);
return var;
}
case TypeKind::StorageType:
return py::cast<at::Storage>(obj);
case TypeKind::FloatType:
return py::cast<double>(obj);
case TypeKind::ComplexType: {
auto c_obj = py::cast<std::complex<double>>(obj.ptr());
return static_cast<c10::complex<double>>(c_obj);
}
case TypeKind::IntType:
// TODO(xintchen): Handling LayoutType and ScalarTypeType correctly.
case TypeKind::LayoutType:
case TypeKind::ScalarTypeType:
if (THPDtype_Check(obj.ptr())) {
auto dtype = reinterpret_cast<THPDtype*>(obj.ptr());
return static_cast<int64_t>(dtype->scalar_type);
}
if (THPQScheme_Check(obj.ptr())) {
auto qscheme = reinterpret_cast<THPQScheme*>(obj.ptr());
return static_cast<uint8_t>(qscheme->qscheme);
}
if (THPLayout_Check(obj.ptr())) {
auto layout = reinterpret_cast<THPLayout*>(obj.ptr());
return static_cast<int8_t>(layout->layout);
}
return py::cast<int64_t>(obj);
case TypeKind::NoneType:
if (!obj.is_none()) {
throw py::cast_error(
c10::str("Cannot cast ", py::str(obj), " to None"));
}
return {};
case TypeKind::BoolType:
return py::cast<bool>(obj);
case TypeKind::TupleType: {
py::tuple tuple = py::cast<py::tuple>(obj);
size_t tuple_size = tuple.size();
auto tuple_type = type->cast<TupleType>();
const auto& elem_types = tuple_type->elements();
if (elem_types.size() != tuple_size) {
throw py::cast_error(c10::str(
"Object ",
py::str(obj),
" had a different number of elements than type ",
type->repr_str()));
}
std::vector<IValue> values;
values.reserve(tuple_size);
for (const auto i : c10::irange(tuple_size)) {
values.push_back(toIValue(tuple[i], elem_types[i]));
}
return tuple_type->name()
? c10::ivalue::Tuple::createNamed(std::move(values), tuple_type)
: c10::ivalue::Tuple::create(std::move(values));
}
case TypeKind::UnionType: {
auto actual_type = toTypeInferredIValue(obj);
auto actual_type_ptr = actual_type.type();
auto union_type = type->expect<UnionType>();
if (!actual_type_ptr->isSubtypeOf(union_type)) {
throw py::cast_error(c10::str(
"Expected a member of ",
union_type->annotation_str(),
" but instead found type ",
actual_type.type()->annotation_str()));
}
return actual_type;
}
case TypeKind::StringType:
return ConstantString::create(py::cast<std::string>(obj));
case TypeKind::DeviceObjType: {
if (THPDevice_Check(obj.ptr())) {
auto device = reinterpret_cast<THPDevice*>(obj.ptr());
return device->device;
}
return c10::Device(py::cast<std::string>(obj.ptr()));
}
case TypeKind::StreamObjType: {
auto stream = reinterpret_cast<THPStream*>(obj.ptr());
return static_cast<int64_t>(stream->cdata);
}
case TypeKind::ListType: {
// If the object is a ScriptList, retrieve the c10::List
// instance inside it.
try {
auto script_list = py::cast<ScriptList>(obj);
return script_list.list_;
} catch (...) {
}
// If not (i.e. it is a regular Python list), make a new
// c10::List.
const auto& elem_type = type->expectRef<ListType>().getElementType();
switch (elem_type->kind()) {
// allows single int/float to be broadcasted to a fixed size list
case TypeKind::IntType:
if (!N || !py::isinstance<py::int_>(obj)) {
return IValue(py::cast<std::vector<int64_t>>(obj));
} else {
int64_t value = py::cast<int64_t>(obj);
c10::List<int64_t> repeated;
repeated.reserve(*N);
for (int i = 0; i < *N; ++i) {
repeated.push_back(value);
}
return repeated;
}
case TypeKind::FloatType:
if (!N || !py::isinstance<py::float_>(obj)) {
return IValue(py::cast<std::vector<double>>(obj));
} else {
double value = py::cast<double>(obj);
c10::List<double> repeated;
repeated.reserve(*N);
for (int i = 0; i < *N; ++i) {
repeated.push_back(value);
}
return repeated;
}
case TypeKind::BoolType:
return IValue(py::cast<std::vector<bool>>(obj));
case TypeKind::TensorType:
return IValue(py::cast<std::vector<at::Tensor>>(obj));
default:
return createGenericList(obj, elem_type);
}
}
case TypeKind::DictType: {
const auto& dict_type = type->expect<DictType>();
// If the object is a ScriptDict, retrieve the c10::Dict
// instance inside it.
try {
auto script_dict = py::cast<ScriptDict>(obj);
return script_dict.dict_;
} catch (py::cast_error& e) {
}
// If not (i.e. it is a regular Python dictionary), make a new
// c10::Dict.
return createGenericDict(
py::cast<py::dict>(obj),
dict_type->getKeyType(),
dict_type->getValueType());
}
case TypeKind::OptionalType: {
// check if it's a none obj since optional accepts NoneType
if (obj.is_none()) {
// check if it's a none obj since optional accepts NoneType
// return an IValue() to denote a NoneType
return {};
}
return toIValue(obj, type->expectRef<OptionalType>().getElementType());
}
case TypeKind::ClassType: {
auto classType = type->expect<ClassType>();
auto object = py::cast<py::object>(obj);
if (auto mod = as_module(object)) {
// if obj is already a ScriptModule, just return its ivalue
return mod.value()._ivalue();
}
// Check if the obj is a ScriptObject.
if (auto script_obj = as_object(object)) {
return script_obj.value()._ivalue();
}
// otherwise is a normal class object, we create a fresh
// ivalue::Object to use from the py object.
// 1. create a bare ivalue
const size_t numAttrs = classType->numAttributes();
auto cu = classType->compilation_unit();
auto userObj = c10::ivalue::Object::create(
c10::StrongTypePtr(cu, classType), numAttrs);
// 2. copy all the contained types
for (const auto slot : c10::irange(numAttrs)) {
const auto& attrType = classType->getAttribute(slot);
const auto& attrName = classType->getAttributeName(slot);
if (!py::hasattr(obj, attrName.c_str())) {
throw py::cast_error(c10::str(
"Tried to cast object to type ",
type->repr_str(),
" but object",
" was missing attribute ",
attrName));
}
try {
const auto& contained = py::getattr(obj, attrName.c_str());
userObj->setSlot(slot, toIValue(contained, attrType));
} catch (std::exception& e) {
throw py::cast_error(c10::str(
"Could not cast attribute '",
attrName,
"' to type ",
attrType->repr_str(),
": ",
e.what()));
}
}
return userObj;
}
case TypeKind::InterfaceType: {
auto interfaceType = type->expect<InterfaceType>();
// When converting an pyobj to an interface, we check if rhs
// is module or normal torchscript class, get the type and ivalue
// from them correspondingly.
c10::ClassTypePtr classType = nullptr;
IValue res;
if (auto mod = as_module(py::cast<py::object>(obj))) {
classType = mod.value().type();
res = mod.value()._ivalue();
} else if (auto object = as_object(py::cast<py::object>(obj))) {
classType = object.value().type();
res = object.value()._ivalue();
} else {
// We inspect the value to found the compiled TorchScript class
// and then create a ivalue::Object from that class type.
py::str qualified_name = py::module::import("torch._jit_internal")
.attr("_qualified_name")(obj.get_type());
auto pyCu = get_python_cu();
classType = pyCu->get_class(c10::QualifiedName(qualified_name));
if (!classType) {
throw std::runtime_error(c10::str(
"Assigning the object ",
py::str(obj),
" to an interface fails because the value is not "
"a TorchScript compatible type, did you forget to",
"turn it into a user defined TorchScript class?"));
}
res = toIValue(obj, classType);
}
// check if the classType conform with the interface or not
std::stringstream why_not;
if (!classType->isSubtypeOfExt(*interfaceType, &why_not)) {
throw py::cast_error(c10::str(
"Object of type ",
classType->repr_str(),
" is not compatible with interface ",
interfaceType->repr_str(),
"\n",
why_not.str()));
}
return res;
}
case TypeKind::NumberType: {
if (THPDtype_Check(obj.ptr())) {
auto dtype = reinterpret_cast<THPDtype*>(obj.ptr());
return static_cast<int64_t>(dtype->scalar_type);
}
if (THPQScheme_Check(obj.ptr())) {
auto qscheme = reinterpret_cast<THPQScheme*>(obj.ptr());
return static_cast<uint8_t>(qscheme->qscheme);
}
if (THPLayout_Check(obj.ptr())) {
auto layout = reinterpret_cast<THPLayout*>(obj.ptr());
return static_cast<int8_t>(layout->layout);
}
if (py::isinstance<py::int_>(obj)) {
return py::cast<int64_t>(obj);
} else if (py::isinstance<py::float_>(obj)) {
return py::cast<double>(obj);
} else if (PyComplex_CheckExact(obj.ptr())) {
auto c_obj = py::cast<std::complex<double>>(obj.ptr());
return static_cast<c10::complex<double>>(c_obj);
} else {
throw py::cast_error(
c10::str("Cannot cast ", py::str(obj), " to ", type->repr_str()));
}
}
case TypeKind::RRefType: {
#ifdef USE_RPC
return obj.cast<torch::distributed::rpc::PyRRef>().toIValue();
#else
AT_ERROR("RRef is only supported with the distributed package");
#endif
} break;
case TypeKind::PyObjectType: {
return c10::ivalue::ConcretePyObjectHolder::create(obj);
}
case TypeKind::CapsuleType: {
return IValue::make_capsule(py::cast<c10::Capsule>(obj).obj_ptr);
}
case TypeKind::FutureType: {
return obj.cast<std::shared_ptr<PythonFutureWrapper>>()->fut;
}
case TypeKind::AnyType:
return toTypeInferredIValue(obj);
case TypeKind::DynamicType:
case TypeKind::FunctionType:
case TypeKind::GeneratorType:
case TypeKind::QuantizerType:
case TypeKind::VarType:
case TypeKind::QSchemeType:
case TypeKind::AnyListType:
case TypeKind::AnyTupleType:
case TypeKind::AnyClassType:
case TypeKind::AnyEnumType:
break;
case TypeKind::EnumType:
EnumTypePtr enum_type = type->expect<EnumType>();
py::object py_obj = py::reinterpret_borrow<py::object>(obj);
std::string name = py::cast<std::string>(obj.attr("name"));
IValue value = toIValue(obj.attr("value"), enum_type->getValueType(), {});
auto enum_holder =
c10::make_intrusive<c10::ivalue::EnumHolder>(enum_type, name, value);
return IValue(enum_holder);
}
throw py::cast_error(c10::str(
"toIValue() cannot handle converting to type: ", type->repr_str()));
}
} // namespace jit
} // namespace torch