-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTypes.v
918 lines (738 loc) · 28 KB
/
Types.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
(** * Types: Type Systems *)
Require Export Smallstep.
Hint Constructors multi.
(** Our next major topic is _type systems_ -- static program
analyses that classify expressions according to the "shapes" of
their results. We'll begin with a typed version of a very simple
language with just booleans and numbers, to introduce the basic
ideas of types, typing rules, and the fundamental theorems about
type systems: _type preservation_ and _progress_. Then we'll move
on to the _simply typed lambda-calculus_, which lives at the core
of every modern functional programming language (including
Coq). *)
(* ###################################################################### *)
(** * Typed Arithmetic Expressions *)
(** To motivate the discussion of type systems, let's begin as
usual with an extremely simple toy language. We want it to have
the potential for programs "going wrong" because of runtime type
errors, so we need something a tiny bit more complex than the
language of constants and addition that we used in chapter
[Smallstep]: a single kind of data (just numbers) is too simple,
but just two kinds (numbers and booleans) already gives us enough
material to tell an interesting story.
The language definition is completely routine. The only thing to
notice is that we are _not_ using the [asnum]/[aslist] trick that
we used in chapter [HoareList] to make all the operations total by
forcibly coercing the arguments to [+] (for example) into numbers.
Instead, we simply let terms get stuck if they try to use an
operator with the wrong kind of operands: the [step] relation
doesn't relate them to anything. *)
(* ###################################################################### *)
(** ** Syntax *)
(** Informally:
t ::= true
| false
| if t then t else t
| 0
| succ t
| pred t
| iszero t
Formally:
*)
Inductive tm : Type :=
| ttrue : tm
| tfalse : tm
| tif : tm -> tm -> tm -> tm
| tzero : tm
| tsucc : tm -> tm
| tpred : tm -> tm
| tiszero : tm -> tm.
(** _Values_ are [true], [false], and numeric values... *)
Inductive bvalue : tm -> Prop :=
| bv_true : bvalue ttrue
| bv_false : bvalue tfalse.
Inductive nvalue : tm -> Prop :=
| nv_zero : nvalue tzero
| nv_succ : forall t, nvalue t -> nvalue (tsucc t).
Definition value (t:tm) := bvalue t \/ nvalue t.
Hint Constructors bvalue nvalue.
Hint Unfold value.
Hint Unfold extend.
(* ###################################################################### *)
(** ** Operational Semantics *)
(** Informally: *)
(**
------------------------------ (ST_IfTrue)
if true then t1 else t2 ==> t1
------------------------------- (ST_IfFalse)
if false then t1 else t2 ==> t2
t1 ==> t1'
------------------------- (ST_If)
if t1 then t2 else t3 ==>
if t1' then t2 else t3
t1 ==> t1'
-------------------- (ST_Succ)
succ t1 ==> succ t1'
------------ (ST_PredZero)
pred 0 ==> 0
numeric value v1
--------------------- (ST_PredSucc)
pred (succ v1) ==> v1
t1 ==> t1'
-------------------- (ST_Pred)
pred t1 ==> pred t1'
----------------- (ST_IszeroZero)
iszero 0 ==> true
numeric value v1
-------------------------- (ST_IszeroSucc)
iszero (succ v1) ==> false
t1 ==> t1'
------------------------ (ST_Iszero)
iszero t1 ==> iszero t1'
*)
(** Formally: *)
Reserved Notation "t1 '==>' t2" (at level 40).
Inductive step : tm -> tm -> Prop :=
| ST_IfTrue : forall t1 t2,
(tif ttrue t1 t2) ==> t1
| ST_IfFalse : forall t1 t2,
(tif tfalse t1 t2) ==> t2
| ST_If : forall t1 t1' t2 t3,
t1 ==> t1' ->
(tif t1 t2 t3) ==> (tif t1' t2 t3)
| ST_Succ : forall t1 t1',
t1 ==> t1' ->
(tsucc t1) ==> (tsucc t1')
| ST_PredZero :
(tpred tzero) ==> tzero
| ST_PredSucc : forall t1,
nvalue t1 ->
(tpred (tsucc t1)) ==> t1
| ST_Pred : forall t1 t1',
t1 ==> t1' ->
(tpred t1) ==> (tpred t1')
| ST_IszeroZero :
(tiszero tzero) ==> ttrue
| ST_IszeroSucc : forall t1,
nvalue t1 ->
(tiszero (tsucc t1)) ==> tfalse
| ST_Iszero : forall t1 t1',
t1 ==> t1' ->
(tiszero t1) ==> (tiszero t1')
where "t1 '==>' t2" := (step t1 t2).
Tactic Notation "step_cases" tactic(first) ident(c) :=
first;
[ Case_aux c "ST_IfTrue" | Case_aux c "ST_IfFalse" | Case_aux c "ST_If"
| Case_aux c "ST_Succ" | Case_aux c "ST_PredZero"
| Case_aux c "ST_PredSucc" | Case_aux c "ST_Pred"
| Case_aux c "ST_IszeroZero" | Case_aux c "ST_IszeroSucc"
| Case_aux c "ST_Iszero" ].
Hint Constructors step.
(** Notice that the [step] relation doesn't care about whether
expressions make global sense -- it just checks that the operation
in the _next_ reduction step is being applied to the right kinds
of operands.
For example, the term [succ true] (i.e., [tsucc ttrue] in the
formal syntax) cannot take a step, but the almost as obviously
nonsensical term
succ (if true then true else true)
can take a step (once, before becoming stuck). *)
(* ###################################################################### *)
(** ** Normal Forms and Values *)
(** The first interesting thing about the [step] relation in this
language is that the strong progress theorem from the Smallstep
chapter fails! That is, there are terms that are normal
forms (they can't take a step) but not values (because we have not
included them in our definition of possible "results of
evaluation"). Such terms are _stuck_. *)
Notation step_normal_form := (normal_form step).
Definition stuck (t:tm) : Prop :=
step_normal_form t /\ ~ value t.
Hint Unfold stuck.
(** **** Exercise: 2 stars (some_term_is_stuck) *)
Example some_term_is_stuck :
exists t, stuck t.
Proof.
exists (tsucc ttrue).
unfold stuck.
split.
Case "left".
unfold normal_form.
unfold not.
intros t'.
inversion t'.
intros.
inversion H.
subst.
inversion H.
subst.
inversion H3.
Case "right".
unfold not.
intros H.
inversion H.
inversion H0.
inversion H0.
inversion H1.
inversion H2.
Qed.
(** [] *)
(** However, although values and normal forms are not the same in this
language, the former set is included in the latter. This is
important because it shows we did not accidentally define things
so that some value could still take a step. *)
(** **** Exercise: 3 stars, advanced (value_is_nf) *)
(** Hint: You will reach a point in this proof where you need to
use an induction to reason about a term that is known to be a
numeric value. This induction can be performed either over the
term itself or over the evidence that it is a numeric value. The
proof goes through in either case, but you will find that one way
is quite a bit shorter than the other. For the sake of the
exercise, try to complete the proof both ways. *)
Lemma value_is_nf : forall t,
value t -> step_normal_form t.
Proof.
(* FILL IN HERE *) Admitted.
(** [] *)
(** **** Exercise: 3 stars, optional (step_deterministic) *)
(** Using [value_is_nf], we can show that the [step] relation is
also deterministic... *)
Theorem step_deterministic:
deterministic step.
Proof with eauto.
(* FILL IN HERE *) Admitted.
(** [] *)
(* ###################################################################### *)
(** ** Typing *)
(** The next critical observation about this language is that,
although there are stuck terms, they are all "nonsensical", mixing
booleans and numbers in a way that we don't even _want_ to have a
meaning. We can easily exclude such ill-typed terms by defining a
_typing relation_ that relates terms to the types (either numeric
or boolean) of their final results. *)
Inductive ty : Type :=
| TBool : ty
| TNat : ty.
(** In informal notation, the typing relation is often written
[|- t \in T], pronounced "[t] has type [T]." The [|-] symbol is
called a "turnstile". (Below, we're going to see richer typing
relations where an additional "context" argument is written to the
left of the turnstile. Here, the context is always empty.) *)
(**
---------------- (T_True)
|- true \in Bool
----------------- (T_False)
|- false \in Bool
|- t1 \in Bool |- t2 \in T |- t3 \in T
-------------------------------------------- (T_If)
|- if t1 then t2 else t3 \in T
------------ (T_Zero)
|- 0 \in Nat
|- t1 \in Nat
------------------ (T_Succ)
|- succ t1 \in Nat
|- t1 \in Nat
------------------ (T_Pred)
|- pred t1 \in Nat
|- t1 \in Nat
--------------------- (T_IsZero)
|- iszero t1 \in Bool
*)
Reserved Notation "'|-' t '\in' T" (at level 40).
Inductive has_type : tm -> ty -> Prop :=
| T_True :
|- ttrue \in TBool
| T_False :
|- tfalse \in TBool
| T_If : forall t1 t2 t3 T,
|- t1 \in TBool ->
|- t2 \in T ->
|- t3 \in T ->
|- tif t1 t2 t3 \in T
| T_Zero :
|- tzero \in TNat
| T_Succ : forall t1,
|- t1 \in TNat ->
|- tsucc t1 \in TNat
| T_Pred : forall t1,
|- t1 \in TNat ->
|- tpred t1 \in TNat
| T_Iszero : forall t1,
|- t1 \in TNat ->
|- tiszero t1 \in TBool
where "'|-' t '\in' T" := (has_type t T).
Tactic Notation "has_type_cases" tactic(first) ident(c) :=
first;
[ Case_aux c "T_True" | Case_aux c "T_False" | Case_aux c "T_If"
| Case_aux c "T_Zero" | Case_aux c "T_Succ" | Case_aux c "T_Pred"
| Case_aux c "T_Iszero" ].
Hint Constructors has_type.
(* ###################################################################### *)
(** *** Examples *)
(** It's important to realize that the typing relation is a
_conservative_ (or _static_) approximation: it does not calculate
the type of the normal form of a term. *)
Example has_type_1 :
|- tif tfalse tzero (tsucc tzero) \in TNat.
Proof.
apply T_If.
apply T_False.
apply T_Zero.
apply T_Succ.
apply T_Zero.
Qed.
(** (Since we've included all the constructors of the typing relation
in the hint database, the [auto] tactic can actually find this
proof automatically.) *)
Example has_type_not :
~ (|- tif tfalse tzero ttrue \in TBool).
Proof.
intros Contra. solve by inversion 2. Qed.
(** **** Exercise: 1 star, optional (succ_hastype_nat__hastype_nat) *)
Example succ_hastype_nat__hastype_nat : forall t,
|- tsucc t \in TNat ->
|- t \in TNat.
Proof.
(* FILL IN HERE *) Admitted.
(** [] *)
(* ###################################################################### *)
(** ** Canonical forms *)
(** The following two lemmas capture the basic property that defines
the shape of well-typed values. They say that the definition of value
and the typing relation agree. *)
Lemma bool_canonical : forall t,
|- t \in TBool -> value t -> bvalue t.
Proof.
intros t HT HV.
inversion HV; auto.
induction H; inversion HT; auto.
Qed.
Lemma nat_canonical : forall t,
|- t \in TNat -> value t -> nvalue t.
Proof.
intros t HT HV.
inversion HV.
inversion H; subst; inversion HT.
auto.
Qed.
(* ###################################################################### *)
(** ** Progress *)
(** The typing relation enjoys two critical properties. The first is
that well-typed normal forms are values (i.e., not stuck). *)
Theorem progress : forall t T,
|- t \in T ->
value t \/ exists t', t ==> t'.
(** **** Exercise: 3 stars (finish_progress) *)
(** Complete the formal proof of the [progress] property. (Make sure
you understand the informal proof fragment in the following
exercise before starting -- this will save you a lot of time.) *)
Proof with auto.
intros t T HT.
has_type_cases (induction HT) Case...
(* The cases that were obviously values, like T_True and
T_False, were eliminated immediately by auto *)
Case "T_If".
right. inversion IHHT1; clear IHHT1.
SCase "t1 is a value".
apply (bool_canonical t1 HT1) in H.
inversion H; subst; clear H.
exists t2...
exists t3...
SCase "t1 can take a step".
inversion H as [t1' H1].
exists (tif t1' t2 t3)...
Case "T_Succ".
inversion IHHT.
left.
SCase "t1 is a value".
unfold value.
right.
inversion H.
inversion H0; subst. solve by inversion.
solve by inversion.
constructor...
right.
SCase "t1 can take a step".
inversion H.
exists (tsucc x)...
Case "T_Pred".
inversion IHHT.
right.
SCase "t1 is a value".
unfold value.
inversion H.
inversion H0; subst.
solve by inversion.
solve by inversion.
inversion H0.
exists (tzero)...
exists (t)...
SCase "t1 can take a step".
right.
inversion H.
exists (tpred x)...
(*Case "T_IsZero".*)
inversion IHHT.
right.
SCase "t1 is a value".
unfold value.
inversion H.
inversion H0; subst.
solve by inversion.
solve by inversion.
inversion H0.
exists (ttrue)...
exists (tfalse)...
SCase "t1 can take a step".
right.
inversion H.
exists (tiszero x)...
Qed.
(** [] *)
(** **** Exercise: 3 stars, advanced (finish_progress_informal) *)
(** Complete the corresponding informal proof: *)
(** _Theorem_: If [|- t \in T], then either [t] is a value or else
[t ==> t'] for some [t']. *)
(** _Proof_: By induction on a derivation of [|- t \in T].
- If the last rule in the derivation is [T_If], then [t = if t1
then t2 else t3], with [|- t1 \in Bool], [|- t2 \in T] and [|- t3
\in T]. By the IH, either [t1] is a value or else [t1] can step
to some [t1'].
- If [t1] is a value, then by the canonical forms lemmas
and the fact that [|- t1 \in Bool] we have that [t1]
is a [bvalue] -- i.e., it is either [true] or [false].
If [t1 = true], then [t] steps to [t2] by [ST_IfTrue],
while if [t1 = false], then [t] steps to [t3] by
[ST_IfFalse]. Either way, [t] can step, which is what
we wanted to show.
- If [t1] itself can take a step, then, by [ST_If], so can
[t].
(* FILL IN HERE *)
[]
*)
(** This is more interesting than the strong progress theorem that we
saw in the Smallstep chapter, where _all_ normal forms were
values. Here, a term can be stuck, but only if it is ill
typed. *)
(** **** Exercise: 1 star (step_review) *)
(** Quick review. Answer _true_ or _false_. In this language...
- Every well-typed normal form is a value.
- Every value is a normal form.
- The single-step evaluation relation is
a partial function (i.e., it is deterministic).
- The single-step evaluation relation is a _total_ function.
*)
(** [] *)
(* ###################################################################### *)
(** ** Type Preservation *)
(** The second critical property of typing is that, when a well-typed
term takes a step, the result is also a well-typed term.
This theorem is often called the _subject reduction_ property,
because it tells us what happens when the "subject" of the typing
relation is reduced. This terminology comes from thinking of
typing statements as sentences, where the term is the subject and
the type is the predicate. *)
Theorem preservation : forall t t' T,
|- t \in T ->
t ==> t' ->
|- t' \in T.
(** **** Exercise: 2 stars (finish_preservation) *)
(** Complete the formal proof of the [preservation] property. (Again,
make sure you understand the informal proof fragment in the
following exercise first.) *)
Proof with auto.
intros t t' T HT HE.
generalize dependent t'.
has_type_cases (induction HT) Case;
(* every case needs to introduce a couple of things *)
intros t' HE;
(* and we can deal with several impossible
cases all at once *)
try (solve by inversion).
Case "T_If". inversion HE; subst; clear HE.
SCase "ST_IFTrue". assumption.
SCase "ST_IfFalse". assumption.
SCase "ST_If". apply T_If; try assumption.
apply IHHT1; assumption.
Case "T_Succ".
inversion HE.
subst...
Case "T_Pred".
inversion HE ; subst.
constructor.
inversion HT.
assumption.
constructor.
apply IHHT. assumption.
Case "T_Iszero".
inversion HE. subst...
subst...
subst...
Qed.
(** [] *)
(** **** Exercise: 3 stars, advanced (finish_preservation_informal) *)
(** Complete the following proof: *)
(** _Theorem_: If [|- t \in T] and [t ==> t'], then [|- t' \in T]. *)
(** _Proof_: By induction on a derivation of [|- t \in T].
- If the last rule in the derivation is [T_If], then [t = if t1
then t2 else t3], with [|- t1 \in Bool], [|- t2 \in T] and [|- t3
\in T].
Inspecting the rules for the small-step reduction relation and
remembering that [t] has the form [if ...], we see that the
only ones that could have been used to prove [t ==> t'] are
[ST_IfTrue], [ST_IfFalse], or [ST_If].
- If the last rule was [ST_IfTrue], then [t' = t2]. But we
know that [|- t2 \in T], so we are done.
- If the last rule was [ST_IfFalse], then [t' = t3]. But we
know that [|- t3 \in T], so we are done.
- If the last rule was [ST_If], then [t' = if t1' then t2
else t3], where [t1 ==> t1']. We know [|- t1 \in Bool] so,
by the IH, [|- t1' \in Bool]. The [T_If] rule then gives us
[|- if t1' then t2 else t3 \in T], as required.
(* FILL IN HERE *)
[]
*)
(** **** Exercise: 3 stars (preservation_alternate_proof) *)
(** Now prove the same property again by induction on the
_evaluation_ derivation instead of on the typing derivation.
Begin by carefully reading and thinking about the first few
lines of the above proof to make sure you understand what
each one is doing. The set-up for this proof is similar, but
not exactly the same. *)
Theorem preservation' : forall t t' T,
|- t \in T ->
t ==> t' ->
|- t' \in T.
Proof with eauto.
intros t t' T.
intros H.
intros H2;
generalize dependent T;
induction H2;
intros T H3;
inversion H3;
subst.
apply H5.
apply H6.
apply IHstep in H4.
constructor ; try assumption.
apply IHstep in H0. constructor ; try assumption.
inversion H3 ; subst. assumption.
inversion H1 ; subst.
assumption. constructor.
apply IHstep. apply H0.
constructor.
constructor.
constructor.
apply IHstep.
apply H0.
Qed.
(** [] *)
(* ###################################################################### *)
(** ** Type Soundness *)
(** Putting progress and preservation together, we can see that a
well-typed term can _never_ reach a stuck state. *)
Definition multistep := (multi step).
Notation "t1 '==>*' t2" := (multistep t1 t2) (at level 40).
Corollary soundness : forall t t' T,
|- t \in T ->
t ==>* t' ->
~(stuck t').
Proof.
intros t t' T HT P. induction P; intros [R S].
destruct (progress x T HT); auto.
apply IHP. apply (preservation x y T HT H).
unfold stuck. split; auto. Qed.
(* ###################################################################### *)
(** * Aside: the [normalize] Tactic *)
(** When experimenting with definitions of programming languages in
Coq, we often want to see what a particular concrete term steps
to -- i.e., we want to find proofs for goals of the form [t ==>*
t'], where [t] is a completely concrete term and [t'] is unknown.
These proofs are simple but repetitive to do by hand. Consider for
example reducing an arithmetic expression using the small-step
relation [astep]. *)
Definition amultistep st := multi (astep st).
Notation " t '/' st '==>a*' t' " := (amultistep st t t')
(at level 40, st at level 39).
Example astep_example1 :
(APlus (ANum 3) (AMult (ANum 3) (ANum 4))) / empty_state
==>a* (ANum 15).
Proof.
apply multi_step with (APlus (ANum 3) (ANum 12)).
apply AS_Plus2.
apply av_num.
apply AS_Mult.
apply multi_step with (ANum 15).
apply AS_Plus.
apply multi_refl.
Qed.
(** We repeatedly apply [multi_step] until we get to a normal
form. The proofs that the intermediate steps are possible are
simple enough that [auto], with appropriate hints, can solve
them. *)
Hint Constructors astep aval.
Example astep_example1' :
(APlus (ANum 3) (AMult (ANum 3) (ANum 4))) / empty_state
==>a* (ANum 15).
Proof.
eapply multi_step. auto. simpl.
eapply multi_step. auto. simpl.
apply multi_refl.
Qed.
(** The following custom [Tactic Notation] definition captures this
pattern. In addition, before each [multi_step] we print out the
current goal, so that the user can follow how the term is being
evaluated. *)
Tactic Notation "print_goal" := match goal with |- ?x => idtac x end.
Tactic Notation "normalize" :=
repeat (print_goal; eapply multi_step ;
[ (eauto 10; fail) | (instantiate; simpl)]);
apply multi_refl.
Example astep_example1'' :
(APlus (ANum 3) (AMult (ANum 3) (ANum 4))) / empty_state
==>a* (ANum 15).
Proof.
normalize.
(* At this point in the proof script, the Coq response shows
a trace of how the expression evaluated.
(APlus (ANum 3) (AMult (ANum 3) (ANum 4)) / empty_state ==>a* ANum 15)
(multi (astep empty_state) (APlus (ANum 3) (ANum 12)) (ANum 15))
(multi (astep empty_state) (ANum 15) (ANum 15))
*)
Qed.
(** The [normalize] tactic also provides a simple way to calculate
what the normal form of a term is, by proving a goal with an
existential variable in it. *)
Example astep_example1''' : exists e',
(APlus (ANum 3) (AMult (ANum 3) (ANum 4))) / empty_state
==>a* e'.
Proof.
eapply ex_intro. normalize.
(* This time, the trace will be:
(APlus (ANum 3) (AMult (ANum 3) (ANum 4)) / empty_state ==>a* ??)
(multi (astep empty_state) (APlus (ANum 3) (ANum 12)) ??)
(multi (astep empty_state) (ANum 15) ??)
where ?? is the variable ``guessed'' by eapply.
*)
Qed.
(** **** Exercise: 1 star (normalize_ex) *)
Theorem normalize_ex : exists e',
(AMult (ANum 3) (AMult (ANum 2) (ANum 1))) / empty_state
==>a* e'.
Proof.
(* FILL IN HERE *) Admitted.
(** [] *)
(** **** Exercise: 1 star, optional (normalize_ex') *)
(** For comparison, prove it using [apply] instead of [eapply]. *)
Theorem normalize_ex' : exists e',
(AMult (ANum 3) (AMult (ANum 2) (ANum 1))) / empty_state
==>a* e'.
Proof.
(* FILL IN HERE *) Admitted.
(** [] *)
(* ###################################################################### *)
(** ** Additional Exercises *)
(** **** Exercise: 2 stars (subject_expansion) *)
(** Having seen the subject reduction property, it is reasonable to
wonder whether the opposity property -- subject _expansion_ --
also holds. That is, is it always the case that, if [t ==> t']
and [|- t' \in T], then [|- t \in T]? If so, prove it. If
not, give a counter-example. (You do not need to prove your
counter-example in Coq, but feel free to do so if you like.)
no, you cannot assume the opposite property holds. Counter example:
tif ttrue tzero -> tzero. Subce ttrue is a bool and tzero is a nat,
tif ttrue tzero is not typed.
Tzero has a definitive type, but
the expression on the left hand of the arrow does not. Therefore,
the opposite implication of type cannot be proven.
[]
*)
(** **** Exercise: 2 stars (variation1) *)
(** Suppose, that we add this new rule to the typing relation:
| T_SuccBool : forall t,
|- t \in TBool ->
|- tsucc t \in TBool
Which of the following properties remain true in the presence of
this rule? For each one, write either "remains true" or
else "becomes false." If a property becomes false, give a
counterexample.
- Determinism of [step]
remain true
- Progress
does NOT remain true. Doesn't make sense to take successor of a bool.
- Preservation
remain true
[]
*)
(** **** Exercise: 2 stars (variation2) *)
(** Suppose, instead, that we add this new rule to the [step] relation:
| ST_Funny1 : forall t2 t3,
(tif ttrue t2 t3) ==> t3
Which of the above properties become false in the presence of
this rule? For each one that does, give a counter-example.
Deterministic- NOT stays the same. Since tif ttrue t2 t3 can now step to
either t2 or t3.
Progress- We didn't change the typing relation, so it stays true.
Preservation- stays same- since we're not changing the typing relation and
only changing the stepping relation, when it steps, it will still be preserved.
[]
*)
(** **** Exercise: 2 stars, optional (variation3) *)
(** Suppose instead that we add this rule:
| ST_Funny2 : forall t1 t2 t2' t3,
t2 ==> t2' ->
(tif t1 t2 t3) ==> (tif t1 t2' t3)
Which of the above properties become false in the presence of
this rule? For each one that does, give a counter-example.
[]
*)
(** **** Exercise: 2 stars, optional (variation4) *)
(** Suppose instead that we add this rule:
| ST_Funny3 :
(tpred tfalse) ==> (tpred (tpred tfalse))
Which of the above properties become false in the presence of
this rule? For each one that does, give a counter-example.
[]
*)
(** **** Exercise: 2 stars, optional (variation5) *)
(** Suppose instead that we add this rule:
| T_Funny4 :
|- tzero \in TBool
]]
Which of the above properties become false in the presence of
this rule? For each one that does, give a counter-example.
[]
*)
(** **** Exercise: 2 stars, optional (variation6) *)
(** Suppose instead that we add this rule:
| T_Funny5 :
|- tpred tzero \in TBool
]]
Which of the above properties become false in the presence of
this rule? For each one that does, give a counter-example.
[]
*)
(** **** Exercise: 3 stars, optional (more_variations) *)
(** Make up some exercises of your own along the same lines as
the ones above. Try to find ways of selectively breaking
properties -- i.e., ways of changing the definitions that
break just one of the properties and leave the others alone.
[]
*)
(** **** Exercise: 1 star (remove_predzero) *)
(** The evaluation rule [E_PredZero] is a bit counter-intuitive: we
might feel that it makes more sense for the predecessor of zero to
be undefined, rather than being defined to be zero. Can we
achieve this simply by removing the rule from the definition of
[step]? Would doing so create any problems elsewhere?
(* FILL IN HERE *)
[] *)
(** **** Exercise: 4 stars, advanced (prog_pres_bigstep) *)
(** Suppose our evaluation relation is defined in the big-step style.
What are the appropriate analogs of the progress and preservation
properties?
(* FILL IN HERE *)
[]
*)
(* $Date: 2013-11-20 13:03:49 -0500 (Wed, 20 Nov 2013) $ *)