-
Notifications
You must be signed in to change notification settings - Fork 0
/
s4d.py
127 lines (99 loc) · 3.78 KB
/
s4d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
"""Minimal version of S4D with extra options and features stripped out, for pedagogical purposes.
Reference:
- https://github.com/state-spaces/s4/blob/main/models/s4/s4d.py
"""
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
class S4DKernel(nn.Module):
"""Generate convolution kernel from diagonal SSM parameters.
Note: lr is set to min(0.001, args.lr)
Reference:
- https://github.com/state-spaces/s4/blob/main/example.py#L177
"""
def __init__(self, d_model, N=64, dt_min=0.001, dt_max=0.1, lr=None):
super().__init__()
H = d_model
log_dt = torch.rand(H) * (
math.log(dt_max) - math.log(dt_min)
) + math.log(dt_min)
C = torch.randn(H, N // 2, dtype=torch.cfloat)
self.C = nn.Parameter(torch.view_as_real(C))
self.register("log_dt", log_dt, lr)
log_A_real = torch.log(0.5 * torch.ones(H, N//2))
A_imag = math.pi * repeat(torch.arange(N//2), "n -> h n", h=H)
self.register("log_A_real", log_A_real, lr)
self.register("A_imag", A_imag, lr)
def forward(self, L):
"""
Args:
L: (int) sequence length.
returns:
(..., c, L) where c is number of channels (default 1)
"""
# Materialize parameters
dt = torch.exp(self.log_dt) # [H,]
C = torch.view_as_complex(self.C) # [H,N]
A = -torch.exp(self.log_A_real) + 1j * self.A_imag # [H, N]
# Vandermonde multiplication
dtA = A * dt.unsqueeze(-1) # [H,N]
K = dtA.unsqueeze(-1) * torch.arange(L, device=A.device) # [H,N,L]
C = C * (torch.exp(dtA)-1.) / A
K = 2 * torch.einsum("hn,hnl->hl", C, torch.exp(K)).real
return K
def register(self, name, tensor, lr=None):
"""Register a tensor with a configurable learning rate and 0 weight decay"""
if lr == 0.0:
self.register_buffer(name, tensor)
else:
self.register_parameter(name, nn.Parameter(tensor))
optim = {"weight_decay": 0.0}
if lr is not None:
optim["lr"] = lr
setattr(getattr(self, name), "_optim", optim)
class S4D(nn.Module):
def __init__(self, d_model, d_state=64, dropout=0.0, **kernel_args):
super().__init__()
self.h = d_model
self.n = d_state
self.d_output = self.h
self.D = nn.Parameter(torch.randn(self.h))
# SSM Kernel
self.kernel = S4DKernel(self.h, N=self.n, **kernel_args)
# Pointwise
self.activation = nn.GELU()
self.dropout = nn.Dropout2d(dropout) if dropout > 0.0 else nn.Identity() # NOTE: bugged in PyTorch 1.11
# position-wise output transform to mix features
self.output_linear = nn.Sequential(
nn.Conv1d(self.h, 2*self.h, kernel_size=1),
nn.GLU(dim=-2),
)
def forward(self, u):
"""
Args:
u: (tensor) input tensor, sized [B,L,H].
Returns:
(tensor) output tensor, sized [B,L,H].
"""
u = u.transpose(-1, -2) # [B,L,H] -> [B,H,L]
L = u.size(-1)
# Compute SSM Kernel
k = self.kernel(L=L) # [H,L]
# Convolution
k_f = torch.fft.rfft(k, n=2*L) # [H,L]
u_f = torch.fft.rfft(u, n=2*L) # [B,H,L]
y = torch.fft.irfft(u_f*k_f, n=2*L)[..., :L] # [B,H,L]
# Compute D term in state space equation - essentially a skip connection
y = y + u * self.D.unsqueeze(-1)
y = self.dropout(self.activation(y))
y = self.output_linear(y)
y = y.transpose(-1, -2) # [B,H,L] -> [B,L,H]
return y
if __name__ == "__main__":
N, L, D = 2, 3, 4
m = S4D(D)
x = torch.randn(N, L, D)
y = m(x)
print(y.shape)