-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathforbes_lasso.m
65 lines (54 loc) · 1.39 KB
/
forbes_lasso.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
% FORBES_LASSO
%
% FORBES_LASSO(A, b, lam, opt) solves the problem
%
% minimize (1/2)||Ax-b||^2 + lam*sum(abs(x))
%
function out = forbes_lasso(A, b, lam0, opt)
% if options are not given
if nargin < 4, opt = struct(); end
% set some defualt options
if ~isfield(opt, 'term'), opt.term = []; end
term0 = opt.term;
if ~isfield(opt, 'tol'), opt.tol = []; end
tol0 = opt.tol;
if ~isfield(opt, 'display'), opt.display = 0; end
% compute Lipschitz constant
[m, n] = size(A);
eigsOpt.issym = 1;
eigsOpt.tol = 1e-3;
funHessian = @(x) A'*(A*x);
Lf = eigs(funHessian, n, 1, 'LM', eigsOpt);
opt.Lf = Lf;
% to warm start or not to warm start?
if ~isfield(opt, 'continuation') || isempty(opt.continuation), opt.continuation = 1; end
if opt.continuation
lam_max = norm(A'*b,'inf');
lam = lam_max;
else
lam = lam0;
end
%
f = quadLoss(1, zeros(m, 1));
init = zeros(n, 1);
for i_cont = 1:100
% % this is the continuation scheme of SpaRSA
% btilde = b-A*init;
% lam = max(0.5*norm(A'*btilde,'inf'), lam0);
% this is the simpler continuation scheme
lam = max(0.5*lam, lam0);
g = l1Norm(lam);
if lam <= lam0
opt.term = term0;
opt.tol = tol0;
else
opt.term = [];
opt.tol = 1e-3*lam;
end
out = forbes(f, g, init, {A, -b}, [], opt);
if lam <= lam0
break;
end
init = out.x;
end
end