-
Notifications
You must be signed in to change notification settings - Fork 21
/
main.py
205 lines (172 loc) · 6.32 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import os
import fsspec
import hydra
import lightning as L
import omegaconf
import rich.syntax
import rich.tree
import torch
import dataloader
import diffusion
import utils
omegaconf.OmegaConf.register_new_resolver(
'cwd', os.getcwd)
omegaconf.OmegaConf.register_new_resolver(
'device_count', torch.cuda.device_count)
omegaconf.OmegaConf.register_new_resolver(
'eval', eval)
omegaconf.OmegaConf.register_new_resolver(
'div_up', lambda x, y: (x + y - 1) // y)
def _load_from_checkpoint(config, tokenizer):
if 'hf' in config.backbone:
return diffusion.Diffusion(
config, tokenizer=tokenizer).to('cuda')
return diffusion.Diffusion.load_from_checkpoint(
config.eval.checkpoint_path,
tokenizer=tokenizer,
config=config)
@L.pytorch.utilities.rank_zero_only
def _print_config(
config: omegaconf.DictConfig,
resolve: bool = True,
save_cfg: bool = True) -> None:
"""Prints content of DictConfig using Rich library and its tree structure.
Args:
config (DictConfig): Configuration composed by Hydra.
resolve (bool): Whether to resolve reference fields of DictConfig.
save_cfg (bool): Whether to save the configuration tree to a file.
"""
style = 'dim'
tree = rich.tree.Tree('CONFIG', style=style, guide_style=style)
fields = config.keys()
for field in fields:
branch = tree.add(field, style=style, guide_style=style)
config_section = config.get(field)
branch_content = str(config_section)
if isinstance(config_section, omegaconf.DictConfig):
branch_content = omegaconf.OmegaConf.to_yaml(
config_section, resolve=resolve)
branch.add(rich.syntax.Syntax(branch_content, 'yaml'))
rich.print(tree)
if save_cfg:
with fsspec.open(
'{}/config_tree.txt'.format(
config.checkpointing.save_dir), 'w') as fp:
rich.print(tree, file=fp)
@L.pytorch.utilities.rank_zero_only
def _print_batch(train_ds, valid_ds, tokenizer, k=64):
for dl_type, dl in [
('train', train_ds), ('valid', valid_ds)]:
print(f'Printing {dl_type} dataloader batch.')
batch = next(iter(dl))
print('Batch input_ids.shape', batch['input_ids'].shape)
first = batch['input_ids'][0, :k]
last = batch['input_ids'][0, -k:]
print(f'First {k} tokens:', tokenizer.decode(first))
print('ids:', first)
print(f'Last {k} tokens:', tokenizer.decode(last))
print('ids:', last)
def generate_samples(config, logger, tokenizer):
logger.info('Generating samples.')
model = _load_from_checkpoint(config=config,
tokenizer=tokenizer)
model.gen_ppl_metric.reset()
if config.eval.disable_ema:
logger.info('Disabling EMA.')
model.ema = None
stride_length = config.sampling.stride_length
num_strides = config.sampling.num_strides
for _ in range(config.sampling.num_sample_batches):
if config.sampling.semi_ar:
_, intermediate_samples, _ = model.restore_model_and_semi_ar_sample(
stride_length=stride_length,
num_strides=num_strides,
dt=1 / config.sampling.steps)
text_samples = intermediate_samples[-1]
# Note: Samples generated using semi-ar method
# need to to be processed before computing generative perplexity
# since these samples contain numerous <|endoftext|> tokens
# and diffusion.compute_generative_perplexity() discards
# any text after the first EOS token.
else:
samples = model.restore_model_and_sample(
num_steps=config.sampling.steps)
text_samples = model.tokenizer.batch_decode(samples)
model.compute_generative_perplexity(text_samples)
print('Text samples:', text_samples)
if not config.sampling.semi_ar:
print('Generative perplexity:',
model.gen_ppl_metric.compute())
return text_samples
def _ppl_eval(config, logger, tokenizer):
logger.info('Starting Zero Shot Eval.')
model = _load_from_checkpoint(config=config,
tokenizer=tokenizer)
if config.eval.disable_ema:
logger.info('Disabling EMA.')
model.ema = None
wandb_logger = None
if config.get('wandb', None) is not None:
wandb_logger = L.pytorch.loggers.WandbLogger(
config=omegaconf.OmegaConf.to_object(config),
** config.wandb)
callbacks = []
if 'callbacks' in config:
for _, callback in config.callbacks.items():
callbacks.append(hydra.utils.instantiate(callback))
trainer = hydra.utils.instantiate(
config.trainer,
default_root_dir=os.getcwd(),
callbacks=callbacks,
strategy=hydra.utils.instantiate(config.strategy),
logger=wandb_logger)
_, valid_ds = dataloader.get_dataloaders(
config, tokenizer, skip_train=True, valid_seed=config.seed)
trainer.validate(model, valid_ds)
def _train(config, logger, tokenizer):
logger.info('Starting Training.')
wandb_logger = None
if config.get('wandb', None) is not None:
wandb_logger = L.pytorch.loggers.WandbLogger(
config=omegaconf.OmegaConf.to_object(config),
** config.wandb)
if (config.checkpointing.resume_from_ckpt
and config.checkpointing.resume_ckpt_path is not None
and utils.fsspec_exists(
config.checkpointing.resume_ckpt_path)):
ckpt_path = config.checkpointing.resume_ckpt_path
else:
ckpt_path = None
# Lightning callbacks
callbacks = []
if 'callbacks' in config:
for _, callback in config.callbacks.items():
callbacks.append(hydra.utils.instantiate(callback))
train_ds, valid_ds = dataloader.get_dataloaders(
config, tokenizer)
_print_batch(train_ds, valid_ds, tokenizer)
model = diffusion.Diffusion(
config, tokenizer=valid_ds.tokenizer)
trainer = hydra.utils.instantiate(
config.trainer,
default_root_dir=os.getcwd(),
callbacks=callbacks,
strategy=hydra.utils.instantiate(config.strategy),
logger=wandb_logger)
trainer.fit(model, train_ds, valid_ds, ckpt_path=ckpt_path)
@hydra.main(version_base=None, config_path='configs',
config_name='config')
def main(config):
"""Main entry point for training."""
L.seed_everything(config.seed)
_print_config(config, resolve=True, save_cfg=True)
logger = utils.get_logger(__name__)
tokenizer = dataloader.get_tokenizer(config)
if config.mode == 'sample_eval':
generate_samples(config, logger, tokenizer)
elif config.mode == 'ppl_eval':
_ppl_eval(config, logger, tokenizer)
else:
_train(config, logger, tokenizer)
if __name__ == '__main__':
main()