-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathginfty.py
429 lines (350 loc) · 16.3 KB
/
ginfty.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
from __future__ import print_function
import numpy as np
import numbers
from keras.utils import plot_model
from keras.models import Model
from keras.layers import Input, Dense, Activation, BatchNormalization, InputSpec, Layer, Lambda, RepeatVector, Reshape, \
multiply, add, Flatten
from keras.regularizers import l2
import keras.regularizers
import keras.initializers
import keras.backend as K
# Print iterations progress
def printProgressBar (iteration, total, prefix = '', suffix = '', decimals = 1, length = 100, fill = '#'):
"""
See: https://stackoverflow.com/a/34325723/916672
Call in a loop to create terminal progress bar
@params:
iteration - Required : current iteration (Int)
total - Required : total iterations (Int)
prefix - Optional : prefix string (Str)
suffix - Optional : suffix string (Str)
decimals - Optional : positive number of decimals in percent complete (Int)
length - Optional : character length of bar (Int)
fill - Optional : bar fill character (Str)
"""
percent = ("{0:." + str(decimals) + "f}").format(100 * (iteration / float(total)))
filledLength = int(length * iteration // total)
bar = fill * filledLength + '-' * (length - filledLength)
print('\r%s |%s| %s%% %s' % (prefix, bar, percent, suffix), end = '\r')
# Print New Line on Complete
if iteration == total:
print()
class C_L2(keras.regularizers.Regularizer):
"""Regularizer for L1 and L2 regularization.
# Arguments
l1: Float; L1 regularization factor.
l2: Float; L2 regularization factor.
"""
def __init__(self, l2=0., shift=None):
self.l2 = l2
self.shift = shift
def __call__(self, x):
# # This is hacky: We need a scalar and therefore we calculate the mean of l2
# l2 = self.l2
# if not isinstance(l2, numbers.Number):
# l2 = K.mean(l2, axis=0)
l2 = self.l2
# It may be the case that our l2 is a variable instead of a constant. It is assumed that
# its value is for the complete batch the same. Therefore we calculate its mean over the first axis
# (hacky, but it works)
if not isinstance(l2, numbers.Number):
l2 = K.mean(l2, axis=0)
if self.shift is None:
regularization = K.sum(l2 * K.square(x))
else:
regularization = l2 * K.sum(K.relu(K.square(x) - self.shift))
return regularization
def get_config(self):
return {'l2': float(self.l2),'shift':float(self.shift)}
def GammaRegularizedBatchNorm(reg, max_free_gamma=0., **kwargs):
if reg is not None:
reg = C_L2(reg.l2, shift=max_free_gamma)
return BatchNormalization(gamma_regularizer=reg, **kwargs)
def c_l2(l=0.01):
return C_L2(l2=l)
def step_function(x):
# A step function with the property f'(x)=0, especially for f'(0)
return K.relu(K.sign(x))
class DeltaF(Layer):
def __init__(self, alpha_regularizer=None, default_layer_count=1.,
**kwargs):
super(DeltaF, self).__init__(**kwargs)
self.supports_masking = True
if default_layer_count < K.epsilon():
print("The default layer count should never be smaller or equal to 0, otherwise it will never change (alsp depending on the alpha regularizer). It is recommended to use at least 0.5.")
self.default_layer_count = default_layer_count
self.alpha_initializer = keras.initializers.Constant(default_layer_count)
self.alpha_regularizer = keras.regularizers.get(alpha_regularizer)
def build(self, input_shape):
param_shape = [1]
self.alpha = self.add_weight(shape=param_shape,
name='alpha',
regularizer=self.alpha_regularizer,
initializer=self.alpha_initializer)
# Set input spec
self.input_spec = InputSpec(ndim=len(input_shape))
self.built = True
def call(self, inputs, mask=None):
return K.relu(1 - K.exp(inputs - self.alpha))
def get_config(self):
config = {
'alpha_initializer': keras.initializers.serialize(self.alpha_initializer),
'alpha_regularizer': keras.regularizers.serialize(self.alpha_regularizer),
'default_layer_count': self.default_layer_count
}
base_config = super(DeltaF, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
class GInftlyLayer:
def __init__(self, name, f_layer, h_step=[lambda reg: Activation('relu')], w_init=1.0,
w_regularizer=(c_l2, 1e-11), f_regularizer=(c_l2, 1e-2), h_regularizer=None, res_net_like=True,
param_count_f=None, reweight_regularizer=True, w_step=5):
# w_regularizer[1] = 'auto' oder 'f_regularizer' = auto =>
# initial_w_range=(0, 10) => erstellt bereits 10 layer (macht das netzwerk performanter, da es nicht andauernd neu erstellt werden muss)
if not isinstance(f_layer, list):
f_layer = [f_layer]
if not isinstance(h_step, list):
h_step = [h_step]
self.name = name
self.f_layer = f_layer
self.h_step = h_step
self.w_init = w_init
self.w_regularizer = w_regularizer
self.f_regularizer = f_regularizer
self.h_regularizer = h_regularizer
self.parameter_count_per_f = None
self._current_layers = []
self._deltaF = None
self._res_net_like = res_net_like
self._regularization_weight = 1.0
self._param_count_f = (lambda x: x) if param_count_f is None else param_count_f
self._reweight_regularizer = reweight_regularizer
self._dummy_layer = None
self._w_step = w_step
if param_count_f is not None and not reweight_regularizer:
print("reweight_regularizer is False, therefore param_count_f will be ignored")
def _get_regularizer_c(self):
# w_regularizer = parameter_count_per_f * f_regularizer * c
c = 5e-2 / (104 * 1e-5)
return c
def _get_regularizer(self, current, i=None):
if current is None:
return None
current = (current[0], current[1] * self._regularization_weight)
f = current[0]
l = current[1]
# To make the model faster it can make sense to prebuild more layers than we actually are using.
# But in this case we dont like to count their l2-regularization. So... We just can implement a factor
# that is based on the delta-function. It returns 1 if the function is in the "active range" and 0
# otherwise.
if i is not None:
if self._dummy_layer is None:
raise Exception("No dummy layer is defined, but this is required if a dynamic regularization should be used.")
else:
l *= self._deltaF(self._constant(i) + K.epsilon())
# l *= step_function()
return f(l)
def _get_w_regularization(self):
if self._reweight_regularizer:
c_f = self._get_regularizer_c() * self._param_count_f(self.parameter_count_per_f)
return self._get_regularizer(self.w_regularizer)
def _get_f_regularizer(self, i=None):
if self._reweight_regularizer:
c_f = 1/(self._get_regularizer_c() * self._param_count_f(self.parameter_count_per_f))
return self._get_regularizer(self.f_regularizer, i=i)
def _constant(self, c):
return Lambda(lambda s: s * 0 + c)(self._dummy_layer)
def set_reweight_regularization(self, regularization_weight):
self._regularization_weight = regularization_weight
def get_w(self):
weights = self._deltaF.get_weights()
if len(weights) == 0:
return self.w_init
return weights[0][0]
def is_rebuild_required(self):
return self.get_w() > len(self._current_layers)
def calculate_used_parameters(self):
return max(0, int(np.ceil(self.get_w()))) * self.parameter_count_per_f
def calculate_unused_parameters(self):
return len(self._current_layers) * self.parameter_count_per_f - self.calculate_used_parameters()
def build_network(self, nw):
layer_count = int(np.ceil(self.get_w()))
if self._w_step is not None:
# Use w_step to define the amount of layers to build
layer_count = int(np.ceil((layer_count / self._w_step))) * self._w_step
dim = list(map(lambda x: int(str(x)), nw._keras_shape[1:]))
dim_n = np.prod(dim)
# We never remove any layer:)
# # Remove layers if we have too many of them
# self._current_layers = self._current_layers[:layer_count]
# Add new layers if more layers are required
for i in range(len(self._current_layers), layer_count):
self._current_layers.append({
'f_layer': self._get_layers('f', self.f_layer, self._get_f_regularizer(i)),
'h_step': self._get_layers('f', self.h_step, self.h_regularizer)
})
# Build now the model; Call the input "x"
x = nw
for i in range(layer_count):
# Execute the delta-function for the current layer (i)
lf = self._deltaF(self._constant(i))
# Resize it to the required dimension
lf = RepeatVector(dim_n)(lf)
lf = Reshape(dim)(lf)
# Calculate the next layer
l_next = x
for layer in self._current_layers[i]['f_layer']:
l_next = layer(l_next)
# Weight the new calculation
l_next = multiply([l_next, lf])
# If required: Weight the old calculation
if not self._res_net_like:
lf_i = Lambda(lambda x: 1 - x)(lf)
x = multiply([x, lf_i])
# Sum up the two values:
x = add([l_next, x])
# Calculate h_step
for layer in self._current_layers[i]['h_step']:
x = layer(x)
nw = x
return nw
def init(self, input_layer, dummy_layer=None):
layers = self._get_layers('f', self.f_layer)
# Build the "subnetwork"
nw = input_layer
for layer in layers:
nw = layer(nw)
# Calculate the parameter count
parameters = 0
for layer in layers:
parameters += sum(list(map(lambda w: np.prod(w.shape), layer.get_weights())))
self.parameter_count_per_f = parameters
# Create the DeltaF layer
self._deltaF = DeltaF(self._get_w_regularization(), default_layer_count=self.w_init)
# Store the dummy layer
if dummy_layer is not None:
if len(dummy_layer._keras_shape) > 2:
dummy_layer = Flatten()(dummy_layer)
dummy_layer = Dense(1, kernel_initializer='zeros', trainable=False)(dummy_layer)
self._dummy_layer = dummy_layer
return nw
def _get_layers(self, base_name, layer_builders, regularizer=None):
return [layer_builders[i](regularizer) for i in range(len(layer_builders))]
class TDModel:
def __init__(self):
self._layers = []
self._model = None
self._dynamic_layers = []
self._compile_kwargs = {}
def append(self, layer):
if isinstance(layer, list):
for l in layer:
self.append(l)
return
self._layers.append(layer)
def __add__(self, layer):
self.append(layer)
return self
def rebuild_model_if_required(self):
if not any(map(lambda dl: dl.is_rebuild_required(), self._dynamic_layers)):
return
print("Rebuild model...")
# A new key: This means we need to build a new model
nw_input = self._layers[0]
nw = nw_input
for layer in self._layers[1:]:
if isinstance(layer, GInftlyLayer):
nw = layer.build_network(nw)
else:
nw = layer(nw)
# All layers are created. Compile now the model
self._model = Model(nw_input, nw)
self._model.compile(**self._compile_kwargs)
unused_parameters = sum(map(lambda dl: dl.calculate_unused_parameters(), self._dynamic_layers))
print("Model parameter count: {}".format(self._model.count_params() - unused_parameters))
print("Additional unused parameters: {}".format(unused_parameters))
def init(self, reweight_dynamic_layers=False, **compile_kwargs):
assert len(self._layers) > 0
assert isinstance(self._layers[0], Input((1,)).__class__)
# Prepare the dynamic layers
nw = self._layers[0]
for layer in self._layers[1:]:
if isinstance(layer, GInftlyLayer):
# We need to calculate the parameter count of the dynamic layer
nw = layer.init(nw, dummy_layer=self._layers[0])
# "Register" the dynamic layer
self._dynamic_layers.append(layer)
else:
nw = layer(nw)
if reweight_dynamic_layers:
# Set a regularization factor for all dynamic layers
avg_parameters_per_layer = np.mean(list(map(
lambda l: l.parameter_count_per_f,
self._dynamic_layers
)))
for layer in self._dynamic_layers:
layer.reweight_regularization(layer.parameter_count_per_f / avg_parameters_per_layer)
# Define the compile arguments
self._compile_kwargs = compile_kwargs
# Build the initial model
self.rebuild_model_if_required()
def get_depths(self):
return {
layer.name: layer.get_w() for layer in self._dynamic_layers
}
def print_depths(self):
for layer in self._dynamic_layers:
print("{}.w = {}".format(layer.name, layer.get_w()))
def train_step(self, x, y, validation_data=None, rebuild_model_if_required=True, debug_print=True, **kwargs):
assert self._model is not None
batch_size = x.shape[0]
res = self._model.fit(x, y, batch_size=batch_size, **kwargs)
res = dict(res.history)
if validation_data is not None:
res_valid = self._model.evaluate(*validation_data, batch_size=batch_size, **kwargs)
res_valid = dict(
zip(map(lambda n: 'val_{}'.format(n), self._model.metrics_names),
map(lambda r: [r], res_valid))
)
# Merge the two results
res.update(res_valid)
# Add the d-Weights
depths = self.get_depths()
for d_k in sorted(depths.keys()):
res['d:{}'.format(d_k)] = [depths[d_k]]
if debug_print:
self.print_depths()
if rebuild_model_if_required:
self.rebuild_model_if_required()
return res
def train_batch(self, x, y, validation_data=None, batch_size=None, rebuild_model_if_required=True, debug_print=True, shuffle=True, **kwargs):
if batch_size is None:
batch_size = x.shape[0]
records = x.shape[0]
batches = int(np.ceil(records / batch_size))
if debug_print:
printProgressBar(0, batches)
if shuffle:
p = np.random.permutation(len(x))
x, y = x[p], y[p]
results = []
for i in range(batches):
b_x = x[(i * batch_size):((i + 1) * batch_size)]
b_y = y[(i * batch_size):((i + 1) * batch_size)]
b_debug_print = debug_print
b_validation_data = None
if i == batches - 1:
b_validation_data = validation_data
else:
b_debug_print = False
results.append(self.train_step(
b_x, b_y,
validation_data=b_validation_data,
rebuild_model_if_required=rebuild_model_if_required,
debug_print=b_debug_print,
verbose=1 if b_debug_print else 0,
**kwargs
))
if debug_print:
printProgressBar(i + 1, batches)
return results