-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtrain_bert.py
166 lines (141 loc) · 6.92 KB
/
train_bert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# -----------------------------------------------------------
# Dual Semantic Relations Attention Network (DSRAN) implementation based on
# "VSE++: Improving Visual-Semantic Embeddings with Hard Negatives"
# "Learning Dual Semantic Relations with Graph Attention for Image-Text Matching"
# Keyu Wen, Xiaodong Gu, and Qingrong Cheng
# IEEE Transactions on Circuits and Systems for Video Technology, 2020
# Writen by Keyu Wen, 2020
# ------------------------------------------------------------
import pickle
import os
import time
import shutil
import torch
import data_bert as data
from model_bert import VSE
from evaluation_bert import i2t, t2i, AverageMeter, LogCollector, encode_data, simrank
import numpy as np
import logging
import tensorboard_logger as tb_logger
import argparse
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--data_path', default='data',
help='path to datasets')
parser.add_argument('--data_name', default='coco',
help='{coco,f30k}')
parser.add_argument('--margin', default=0.2, type=float,
help='Rank loss margin.')
parser.add_argument('--num_epochs', default=12, type=int,
help='Number of training epochs.')
parser.add_argument('--batch_size', default=128, type=int,
help='Size of a training mini-batch.')
parser.add_argument('--embed_size', default=1024, type=int,
help='Dimensionality of the joint embedding.')
parser.add_argument('--crop_size', default=224, type=int,
help='Size of an image crop as the CNN input.')
parser.add_argument('--learning_rate', default=2e-5, type=float,
help='Initial learning rate.')
parser.add_argument('--lr_update', default=6, type=int,
help='Number of epochs to update the learning rate.')
parser.add_argument('--workers', default=10, type=int,
help='Number of data loader workers.')
parser.add_argument('--log_step', default=100, type=int,
help='Number of steps to print and record the log.')
parser.add_argument('--logger_name', default='runs/grg',
help='Path to save the model and Tensorboard log.')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--img_dim', default=2048, type=int,
help='Dimensionality of the image embedding.')
parser.add_argument('--ft_res', action='store_true',
help='Fine-tune the image encoder.')
parser.add_argument('--bert_path', default='uncased_L-12_H-768_A-12/',
help='path of pre-trained BERT.')
parser.add_argument('--ft_bert', action='store_true',
help='Fine-tune the text encoder.')
parser.add_argument('--bert_size', default=768, type=int,
help='Dimensionality of the text embedding')
parser.add_argument('--warmup', default=-1, type=float)
parser.add_argument('--K', default=2, type=int,help='num of JSR.')
parser.add_argument('--feature_path', default='data/joint-pretrain/flickr30k/region_feat_gvd_wo_bgd/trainval/',
type=str, help='path to the pre-computed image features')
parser.add_argument('--region_bbox_file',
default='data/joint-pretrain/flickr30k/region_feat_gvd_wo_bgd/flickr30k_detection_vg_thresh0.2_feat_gvd_checkpoint_trainvaltest.h5',
type=str, help='path to the region_bbox_file(.h5)')
opt = parser.parse_args()
logging.basicConfig(format='%(asctime)s %(message)s', level=logging.INFO)
tb_logger.configure(opt.logger_name, flush_secs=5)
train_loader, val_loader = data.get_loaders(opt.data_name, opt.batch_size, opt.workers, opt)
opt.l_train = len(train_loader)
print(opt)
model = VSE(opt)
best_rsum = 0
if opt.resume:
if os.path.isfile(opt.resume):
print("=> loading checkpoint '{}'".format(opt.resume))
checkpoint = torch.load(opt.resume)
start_epoch = checkpoint['epoch']
best_rsum = checkpoint['best_rsum']
model.load_state_dict(checkpoint['model'])
model.Eiters = checkpoint['Eiters']
print("=> loaded checkpoint '{}' (epoch {}, best_rsum {})"
.format(opt.resume, start_epoch, best_rsum))
validate(opt, val_loader, model)[-1]
else:
print("=> no checkpoint found at '{}'".format(opt.resume))
for epoch in range(opt.num_epochs):
adjust_learning_rate(opt, model.optimizer, epoch)
train(opt, train_loader, model, epoch, val_loader)
rsum = validate(opt, val_loader, model)[-1]
is_best = rsum > best_rsum
best_rsum = max(rsum, best_rsum)
save_checkpoint({
'epoch': epoch + 1,
'model': model.state_dict(),
'best_rsum': best_rsum,
'opt': opt,
'Eiters': model.Eiters,
}, is_best, epoch, prefix=opt.logger_name + '/')
def train(opt, train_loader, model, epoch, val_loader):
batch_time = AverageMeter()
data_time = AverageMeter()
train_logger = LogCollector()
model.train_start()
end = time.time()
for i, train_data in enumerate(train_loader):
data_time.update(time.time() - end)
model.logger = train_logger
model.train_emb(*train_data)
batch_time.update(time.time() - end)
end = time.time()
if model.Eiters % opt.log_step == 0:
logging.info(
'Epoch: [{0}][{1}/{2}]\t'
'{e_log}\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
.format(
epoch, i, len(train_loader), batch_time=batch_time,
data_time=data_time, e_log=str(model.logger)))
tb_logger.log_value('epoch', epoch, step=model.Eiters)
tb_logger.log_value('step', i, step=model.Eiters)
tb_logger.log_value('batch_time', batch_time.val, step=model.Eiters)
tb_logger.log_value('data_time', data_time.val, step=model.Eiters)
model.logger.tb_log(tb_logger, step=model.Eiters)
def validate(opt, val_loader, model):
_, _, sims = encode_data(
model, val_loader, opt.log_step, logging.info)
rs = simrank(sims)
del sims
return rs
def save_checkpoint(state, is_best, epoch, filename='checkpoint.pth.tar', prefix=''):
torch.save(state, prefix + filename)
if is_best:
shutil.copyfile(prefix + filename, prefix + 'model_best.pth.tar')
def adjust_learning_rate(opt, optimizer, epoch):
lr = opt.learning_rate * (0.1 ** (epoch // opt.lr_update))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
if __name__ == '__main__':
main()