-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathKDindtree.cc
530 lines (466 loc) · 12.4 KB
/
KDindtree.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
//############################################################
// KDindtree.cc
// Kari Pulli
// 04/13/96
//############################################################
#include <iostream>
#include <cassert>
#include "KDindtree.h"
#include "Bbox.h"
#include "defines.h"
#define MEDIAN_SPLIT 0
#if MEDIAN_SPLIT
#include "Median.h"
static Median<float> med;
#endif
// factory
KDindtree*
CreateKDindtree (const Pnt3* pts, const short* nrms, int nPts)
{
cout << "Creating kdtree (" << nPts << " points)..." << flush;
if (!nPts)
return NULL;
assert (pts);
assert (nrms);
// allocate and fill temp index array
int *inds = new int[nPts];
for (int i = 0; i < nPts; i++) inds[i] = i;
// build tree
KDindtree* kdtree = new KDindtree(pts, nrms, inds, nPts);
// cleanup
delete[] inds;
cout << " done." << endl;
return kdtree;
}
// STL Update
KDindtree*
CreateKDindtree (const vector<Pnt3>::iterator pts, const vector<short>::iterator nrms, int nPts)
{
cout << "Creating kdtree (" << nPts << " points)..." << flush;
if (!nPts)
return NULL;
// WARNING: removing checks!
// assert (pts);
// assert (nrms);
// allocate and fill temp index array
int *inds = new int[nPts];
for (int i = 0; i < nPts; i++) inds[i] = i;
// build tree
KDindtree* kdtree = new KDindtree(pts, nrms, inds, nPts);
// cleanup
delete[] inds;
cout << " done." << endl;
return kdtree;
}
static Pnt3
GetNormalAsPnt3 (const short* nrms, int ofs)
{
ofs *= 3;
Pnt3 n (nrms[ofs], nrms[ofs+1], nrms[ofs+2]);
n /= 32767.0;
return n;
}
static int
divisionsort(const Pnt3 *data, int *p, int n,
int dim, float med)
{
// move values <= med to left, the rest to right
int left = 0, right = n-1;
while (1) {
while (data[p[left]][dim] <= med && right > left) left++;
while (data[p[right]][dim] > med && right > left) right--;
int tmp = p[left]; // swap
p[left] = p[right]; p[right] = tmp;
if (left == right) {
if (data[p[right]][dim] <= med) right++;
break;
}
left++;
}
return right;
}
// STL Update
static int
divisionsort(const vector<Pnt3>::iterator data, int *p, int n,
int dim, float med)
{
// move values <= med to left, the rest to right
int left = 0, right = n-1;
while (1) {
while (data[p[left]][dim] <= med && right > left) left++;
while (data[p[right]][dim] > med && right > left) right--;
int tmp = p[left]; // swap
p[left] = p[right]; p[right] = tmp;
if (left == right) {
if (data[p[right]][dim] <= med) right++;
break;
}
left++;
}
return right;
}
void
merge_normal_cones(const Pnt3 &n1, float th1,
const Pnt3 &n2, float th2,
Pnt3 &n3, float &th3)
{
// first, get the angle between the normals
th3 = .5 * (th1 + th2) + acos(dot(n1,n2));
// full sphere?
if (th3 >= M_PI) {
th3 = M_PI;
n3.set(0,0,1);
return;
}
// figure how much n1 should be rotated to become n3
float half_ang = .25*(th3-th1);
// create quaternion (real part and imaginary part)
// for rotation
float qr = cos(half_ang);
Pnt3 qim = cross(n1,n2);
qim *= sin(half_ang);
// apply rotation
(((n3 = n1) *= (qr*qr-qim.norm2()))
+= (cross(qim, n1) *= (2.0*qr)))
+= (qim *= (2.0*dot(n1,qim)));
//n3 = (qr*qr-qim.norm2())*n1 + (2*dot(n1,qim))*qim
// + 2*qr*cross(qim,n1);
}
KDindtree::KDindtree(const Pnt3 *pts, const short *nrms,
int *ind, int n, int first)
: Nhere(0), element(NULL)
{
int i;
// find the dimension of maximum range
min = max = pts[ind[0]];
int *end = ind+n;
for (int *ip=ind+1; ip<end; ip++) {
const Pnt3 &p = pts[*ip];
min.set_min(p);
max.set_max(p);
}
float dist = max[0] - min[0];
m_d = 0;
float tmp;
if ((tmp = max[1]-min[1]) > dist) {
m_d = 1; dist = tmp;
}
if ((tmp = max[2]-min[2]) > dist) {
m_d = 2; dist = tmp;
}
if (dist == 0.0) n = 1; // a single point several times
if (n > 16) {
#if MEDIAN_SPLIT
#define DATA(i) (pts[ind[i]])[m_d]
// find the median within that dimension
med.clear();
for (i=0; i<n; i++) med += DATA(i);
m_p = med.find();
int right = divisionsort(pts, ind, n, m_d, m_p);
if (right == n) {
// the median is also the largest, need new "median"
// find the next largest item for that
float nm = -9.e33;
for (i=0; i<n; i++) {
if (DATA(i) != m_p && DATA(i) > nm) nm = DATA(i);
}
right = divisionsort(pts, ind, n, m_d, (m_p=nm));
}
assert(right != 0 && right != n);
#undef DATA
#else
m_p = .5*(max[m_d]+min[m_d]);
int right = divisionsort(pts, ind, n, m_d, m_p);
assert(right != 0 && right != n);
#endif
// recurse
child[0] = new KDindtree(pts, nrms, ind, right, 0);
child[1] = new KDindtree(pts, nrms, &ind[right], n-right, 0);
} else {
// store data here
Nhere = n;
element = new int[n];
for (i=0; i<n; i++) element[i] = ind[i];
child[0] = child[1] = NULL;
}
#if MEDIAN_SPLIT
if (first) med.zap(); // release memory after the tree's done
#endif
if (nrms == NULL) return;
// now figure out bounds for the normals
if (Nhere) {
// a terminal node
normal = GetNormalAsPnt3(nrms, element[0]);
theta = 0.0;
for (i=1; i<Nhere; i++) {
merge_normal_cones(normal, theta,
GetNormalAsPnt3(nrms, element[i]), 0,
normal, theta);
}
} else {
// a non-terminal node
merge_normal_cones(child[0]->normal, child[0]->theta,
child[1]->normal, child[1]->theta,
normal, theta);
}
tmp = theta + M_PI * .25;
if (tmp > M_PI) cos_th_p_pi_over_4 = -1.0;
else cos_th_p_pi_over_4 = cos(tmp);
}
// STL Update
KDindtree::KDindtree(const vector<Pnt3>::iterator pts, const vector<short>::iterator nrms,
int *ind, int n, int first)
: Nhere(0), element(NULL)
{
int i;
// find the dimension of maximum range
min = max = pts[ind[0]];
int *end = ind+n;
for (int *ip=ind+1; ip<end; ip++) {
const Pnt3 &p = pts[*ip];
min.set_min(p);
max.set_max(p);
}
float dist = max[0] - min[0];
m_d = 0;
float tmp;
if ((tmp = max[1]-min[1]) > dist) {
m_d = 1; dist = tmp;
}
if ((tmp = max[2]-min[2]) > dist) {
m_d = 2; dist = tmp;
}
if (dist == 0.0) n = 1; // a single point several times
if (n > 16) {
#if MEDIAN_SPLIT
#define DATA(i) (pts[ind[i]])[m_d]
// find the median within that dimension
med.clear();
for (i=0; i<n; i++) med += DATA(i);
m_p = med.find();
int right = divisionsort(pts, ind, n, m_d, m_p);
if (right == n) {
// the median is also the largest, need new "median"
// find the next largest item for that
float nm = -9.e33;
for (i=0; i<n; i++) {
if (DATA(i) != m_p && DATA(i) > nm) nm = DATA(i);
}
right = divisionsort(pts, ind, n, m_d, (m_p=nm));
}
assert(right != 0 && right != n);
#undef DATA
#else
m_p = .5*(max[m_d]+min[m_d]);
int right = divisionsort(pts, ind, n, m_d, m_p);
assert(right != 0 && right != n);
#endif
// recurse
child[0] = new KDindtree(pts, nrms, ind, right, 0);
child[1] = new KDindtree(pts, nrms, &ind[right], n-right, 0);
} else {
// store data here
Nhere = n;
element = new int[n];
for (i=0; i<n; i++) element[i] = ind[i];
child[0] = child[1] = NULL;
}
#if MEDIAN_SPLIT
if (first) med.zap(); // release memory after the tree's done
#endif
// STL Update
// WARNING: Not sure how to check for this..
// if (nrms == NULL) return;
// now figure out bounds for the normals
if (Nhere) {
// a terminal node
// STL Update
normal = GetNormalAsPnt3(&*nrms, element[0]);
theta = 0.0;
for (i=1; i<Nhere; i++) {
// STL Update
merge_normal_cones(normal, theta,
GetNormalAsPnt3(&*nrms, element[i]), 0,
normal, theta);
}
} else {
// a non-terminal node
merge_normal_cones(child[0]->normal, child[0]->theta,
child[1]->normal, child[1]->theta,
normal, theta);
}
tmp = theta + M_PI * .25;
if (tmp > M_PI) cos_th_p_pi_over_4 = -1.0;
else cos_th_p_pi_over_4 = cos(tmp);
}
KDindtree::~KDindtree(void)
{
delete[] element;
delete child[0];
delete child[1];
}
int
KDindtree::_search(const Pnt3 *pts, const short *nrms,
const Pnt3 &p, const Pnt3 &n,
int &ind, float &d) const
{
assert(this);
if (dot(n, normal) < cos_th_p_pi_over_4)
return 0;
if (Nhere) { // terminal node
float l, d2 = d*d;
bool need_sqrt = false;
int *el = element;
int *end = el+Nhere;
for (; el<end; el++) {
l = dist2(pts[*el], p);
if (l < d2) {
const short *sp = &nrms[(*el)*3];
// 32767/sqrt(2)==23169.77
if (n[0]*sp[0] + n[1]*sp[1] + n[2]*sp[2] > 23169.77) {
// normals also within 45 deg
d2=l; ind = *el;
need_sqrt = true;
}
}
}
if (need_sqrt) d = sqrtf(d2);
return ball_within_bounds(p,d,min,max);
}
if (p[m_d] <= m_p) { // the point is left from partition
if (child[0]->_search(pts,nrms,p,n,ind,d))
return 1;
if (bounds_overlap_ball(p,d,child[1]->min,max)) {
if (child[1]->_search(pts,nrms,p,n,ind,d))
return 1;
}
} else { // the point is right from partition
if (child[1]->_search(pts,nrms,p,n,ind,d))
return 1;
if (bounds_overlap_ball(p,d,min,child[0]->max)) {
if (child[0]->_search(pts,nrms,p,n,ind,d))
return 1;
}
}
return ball_within_bounds(p,d,min,max);
}
int
KDindtree::_search(const Pnt3 *pts, const Pnt3 &p,
int &ind, float &d) const
{
assert(this);
if (Nhere) { // terminal node
float l, d2 = d*d;
bool need_sqrt = false;
int *el = element;
int *end = el+Nhere;
for (; el<end; el++) {
l = dist2(pts[*el], p);
if (l < d2) {
d2=l; ind = *el;
need_sqrt = true;
}
}
if (need_sqrt) d = sqrtf(d2);
return ball_within_bounds(p,d,min,max);
}
if (p[m_d] <= m_p) { // the point is left from partition
if (child[0]->_search(pts,p,ind,d))
return 1;
if (bounds_overlap_ball(p,d,child[1]->min,max)) {
if (child[1]->_search(pts,p,ind,d))
return 1;
}
} else { // the point is right from partition
if (child[1]->_search(pts,p,ind,d))
return 1;
if (bounds_overlap_ball(p,d,min,child[0]->max)) {
if (child[0]->_search(pts,p,ind,d))
return 1;
}
}
return ball_within_bounds(p,d,min,max);
}
// STL Update
int
KDindtree::_search(const vector<Pnt3>::iterator pts, const vector<short>::iterator nrms,
const Pnt3 &p, const Pnt3 &n,
int &ind, float &d) const
{
assert(this);
if (dot(n, normal) < cos_th_p_pi_over_4)
return 0;
if (Nhere) { // terminal node
float l, d2 = d*d;
bool need_sqrt = false;
int *el = element;
int *end = el+Nhere;
for (; el<end; el++) {
l = dist2(pts[*el], p);
if (l < d2) {
const short *sp = &nrms[(*el)*3];
// 32767/sqrt(2)==23169.77
if (n[0]*sp[0] + n[1]*sp[1] + n[2]*sp[2] > 23169.77) {
// normals also within 45 deg
d2=l; ind = *el;
need_sqrt = true;
}
}
}
if (need_sqrt) d = sqrtf(d2);
return ball_within_bounds(p,d,min,max);
}
if (p[m_d] <= m_p) { // the point is left from partition
if (child[0]->_search(pts,nrms,p,n,ind,d))
return 1;
if (bounds_overlap_ball(p,d,child[1]->min,max)) {
if (child[1]->_search(pts,nrms,p,n,ind,d))
return 1;
}
} else { // the point is right from partition
if (child[1]->_search(pts,nrms,p,n,ind,d))
return 1;
if (bounds_overlap_ball(p,d,min,child[0]->max)) {
if (child[0]->_search(pts,nrms,p,n,ind,d))
return 1;
}
}
return ball_within_bounds(p,d,min,max);
}
int
KDindtree::_search(const vector<Pnt3>::iterator pts, const Pnt3 &p,
int &ind, float &d) const
{
assert(this);
if (Nhere) { // terminal node
float l, d2 = d*d;
bool need_sqrt = false;
int *el = element;
int *end = el+Nhere;
for (; el<end; el++) {
l = dist2(pts[*el], p);
if (l < d2) {
d2=l; ind = *el;
need_sqrt = true;
}
}
if (need_sqrt) d = sqrtf(d2);
return ball_within_bounds(p,d,min,max);
}
if (p[m_d] <= m_p) { // the point is left from partition
if (child[0]->_search(pts,p,ind,d))
return 1;
if (bounds_overlap_ball(p,d,child[1]->min,max)) {
if (child[1]->_search(pts,p,ind,d))
return 1;
}
} else { // the point is right from partition
if (child[1]->_search(pts,p,ind,d))
return 1;
if (bounds_overlap_ball(p,d,min,child[0]->max)) {
if (child[0]->_search(pts,p,ind,d))
return 1;
}
}
return ball_within_bounds(p,d,min,max);
}