-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathcli_inference_openvino.py
211 lines (167 loc) · 6.45 KB
/
cli_inference_openvino.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
#!/usr/bin/env python
import time
import argparse
import cv2
import numpy as np
from openvino.inference_engine import IENetwork, IECore
def parse_args(args):
parser = argparse.ArgumentParser(description='convert model')
parser.add_argument(
'--img',
help='path to image',
type=str,
required=True
)
parser.add_argument(
'--bin',
help='path to bin openVINO inference model',
type=str,
required=True
)
parser.add_argument(
'--xml',
help='path to xml model sheme',
type=str,
required=True
)
parser.add_argument(
'--count',
help='iference count',
type=int,
required=False,
default=1
)
return parser.parse_args(args)
def decode_openvino_detections(detections, input_shape = (800, 1333)):
"""
Converts openvino detections to understandable format
Parameters:
detections: Detections obtained from net.infer() method.
input_shape: This is required to scale the bounding boxes coordinates passed.
Returns:
boxes: The bounding box coordinates representing (xmin, ymin, xmax, ymax)
scores: The confidence of the detections
labels: The class of the object detected
"""
detections = detections[:,:,detections[:,:,:,2].argsort()[0][0][::-1],:] # sort detections on score
labels = detections[:,:,:,1].astype(int)
scores = detections[:,:,:,2]
boxes = detections[:,:,:,(3,4,5,6)] # in decimal
# rescale to pixel
boxes[:,:,:,(0,2)] = boxes[:,:,:,(0,2)]*input_shape[1]
boxes[:,:,:,(1,3)] = boxes[:,:,:,(1,3)]*input_shape[0]
return boxes[0], scores[0], labels[0]
def compute_resize_scale(image_shape, min_side=800, max_side=1333):
""" Compute an image scale such that the image size is constrained to min_side and max_side.
Args
min_side: The image's min side will be equal to min_side after resizing.
max_side: If after resizing the image's max side is above max_side, resize until the max side is equal to max_side.
Returns
A resizing scale.
"""
(rows, cols, _) = image_shape
smallest_side = min(rows, cols)
# rescale the image so the smallest side is min_side
scale = min_side / smallest_side
# check if the largest side is now greater than max_side, which can happen
# when images have a large aspect ratio
largest_side = max(rows, cols)
if largest_side * scale > max_side:
scale = max_side / largest_side
return scale
def resize_image(img, min_side=800, max_side=1333):
""" Resize an image such that the size is constrained to min_side and max_side.
Args
min_side: The image's min side will be equal to min_side after resizing.
max_side: If after resizing the image's max side is above max_side, resize until the max side is equal to max_side.
Returns
A resized image.
"""
# compute scale to resize the image
scale = compute_resize_scale(img.shape, min_side=min_side, max_side=max_side)
# resize the image with the computed scale
img = cv2.resize(img, None, fx=scale, fy=scale)
return img, scale
def preprocess_image(x, mode='caffe'):
""" Preprocess an image by subtracting the ImageNet mean.
Args
x: np.array of shape (None, None, 3) or (3, None, None).
mode: One of "caffe" or "tf".
- caffe: will zero-center each color channel with
respect to the ImageNet dataset, without scaling.
- tf: will scale pixels between -1 and 1, sample-wise.
Returns
The input with the ImageNet mean subtracted.
"""
# mostly identical to "https://github.com/keras-team/keras-applications/blob/master/keras_applications/imagenet_utils.py"
# except for converting RGB -> BGR since we assume BGR already
# covert always to float32 to keep compatibility with opencv
x = x.astype(np.float32)
if mode == 'tf':
x /= 127.5
x -= 1.
elif mode == 'caffe':
x[..., 0] -= 103.939
x[..., 1] -= 116.779
x[..., 2] -= 123.68
return x
def create_blank(image, w, h, color=(0, 0, 0)):
"""Create new image(numpy array) filled with certain color in BGR"""
r_image = np.zeros((h, w, 3), np.uint8)
r_image[:] = color
r_image[:image.shape[0],:image.shape[1],:image.shape[2]] = image
return r_image
def main(args=None):
args=parse_args(args)
model_xml = args.xml
model_bin = args.bin
img_fn = args.img
predict_count = args.count
print("initialize OpenVino...")
OpenVinoIE = IECore()
print("available devices: ", OpenVinoIE.available_devices)
OpenVinoIE.set_config({"CPU_BIND_THREAD": "YES"}, "CPU")
print("loading model...")
net = IENetwork(model=model_xml, weights=model_bin)
config = {}
OutputLayer = next(iter(net.outputs))
OpenVinoExecutable = OpenVinoIE.load_network(network=net, config=config, device_name="CPU")
input_blob = 'input_1'
net.batch_size = 1
_, _, h, w = net.inputs[input_blob].shape
print(f'model input shape: {net.inputs[input_blob].shape}')
# load images
image = cv2.imread(img_fn)
image, scale = resize_image(image, min_side=min(h, w), max_side=max(h, w))
image = create_blank(image, w, h)
image = preprocess_image(image)
image = image.transpose((2, 0, 1)) # Change data layout from HWC to CHW
image = np.expand_dims(image, axis=0)
labels_to_names = {0: 'Pedestrian'}
print(f'make {predict_count} predictions:')
for _ in range(0, predict_count):
start_time = time.time()
res = OpenVinoExecutable.infer(inputs={input_blob: image})
print("\t{} s".format(time.time() - start_time))
print("prepoocess image at {} s".format(time.time() - start_time))
print("*"*20)
boxes, scores, labels = decode_openvino_detections(res[OutputLayer])
print('bboxes:', boxes.shape)
print('scores:', scores.shape)
print('labels:', labels.shape)
boxes /= scale
objects_count = 0
print("*"*20)
for box, score, label in zip(boxes[0], scores[0], labels[0]):
# scores are sorted so we can break
if score < 0.5:
break
b = np.array(box.astype(int)).astype(int)
# x1 y1 x2 y2
print(f'{labels_to_names[label]}:')
print(f'\tscore: {score}')
print(f'\tbox: {b[0]} {b[1]} {b[2]} {b[3]}')
objects_count = objects_count + 1
print(f'found objects: {objects_count}')
if __name__ == '__main__':
main()