forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
265 lines (218 loc) · 8.94 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Main function to train various object detection models."""
import functools
import pprint
from absl import app
from absl import flags
from absl import logging
import tensorflow as tf
from official.common import distribute_utils
from official.modeling.hyperparams import params_dict
from official.utils import hyperparams_flags
from official.utils.flags import core as flags_core
from official.utils.misc import keras_utils
from official.vision.detection.configs import factory as config_factory
from official.vision.detection.dataloader import input_reader
from official.vision.detection.dataloader import mode_keys as ModeKeys
from official.vision.detection.executor import distributed_executor as executor
from official.vision.detection.executor.detection_executor import DetectionDistributedExecutor
from official.vision.detection.modeling import factory as model_factory
hyperparams_flags.initialize_common_flags()
flags_core.define_log_steps()
flags.DEFINE_bool('enable_xla', default=False, help='Enable XLA for GPU')
flags.DEFINE_string(
'mode',
default='train',
help='Mode to run: `train`, `eval` or `eval_once`.')
flags.DEFINE_string(
'model', default='retinanet',
help='Model to run: `retinanet`, `mask_rcnn` or `shapemask`.')
flags.DEFINE_string('training_file_pattern', None,
'Location of the train data.')
flags.DEFINE_string('eval_file_pattern', None, 'Location of ther eval data')
flags.DEFINE_string(
'checkpoint_path', None,
'The checkpoint path to eval. Only used in eval_once mode.')
FLAGS = flags.FLAGS
def run_executor(params,
mode,
checkpoint_path=None,
train_input_fn=None,
eval_input_fn=None,
callbacks=None,
prebuilt_strategy=None):
"""Runs the object detection model on distribution strategy defined by the user."""
if params.architecture.use_bfloat16:
policy = tf.compat.v2.keras.mixed_precision.experimental.Policy(
'mixed_bfloat16')
tf.compat.v2.keras.mixed_precision.experimental.set_policy(policy)
model_builder = model_factory.model_generator(params)
if prebuilt_strategy is not None:
strategy = prebuilt_strategy
else:
strategy_config = params.strategy_config
distribute_utils.configure_cluster(strategy_config.worker_hosts,
strategy_config.task_index)
strategy = distribute_utils.get_distribution_strategy(
distribution_strategy=params.strategy_type,
num_gpus=strategy_config.num_gpus,
all_reduce_alg=strategy_config.all_reduce_alg,
num_packs=strategy_config.num_packs,
tpu_address=strategy_config.tpu)
num_workers = int(strategy.num_replicas_in_sync + 7) // 8
is_multi_host = (int(num_workers) >= 2)
if mode == 'train':
def _model_fn(params):
return model_builder.build_model(params, mode=ModeKeys.TRAIN)
logging.info(
'Train num_replicas_in_sync %d num_workers %d is_multi_host %s',
strategy.num_replicas_in_sync, num_workers, is_multi_host)
dist_executor = DetectionDistributedExecutor(
strategy=strategy,
params=params,
model_fn=_model_fn,
loss_fn=model_builder.build_loss_fn,
is_multi_host=is_multi_host,
predict_post_process_fn=model_builder.post_processing,
trainable_variables_filter=model_builder
.make_filter_trainable_variables_fn())
if is_multi_host:
train_input_fn = functools.partial(
train_input_fn,
batch_size=params.train.batch_size // strategy.num_replicas_in_sync)
return dist_executor.train(
train_input_fn=train_input_fn,
model_dir=params.model_dir,
iterations_per_loop=params.train.iterations_per_loop,
total_steps=params.train.total_steps,
init_checkpoint=model_builder.make_restore_checkpoint_fn(),
custom_callbacks=callbacks,
save_config=True)
elif mode == 'eval' or mode == 'eval_once':
def _model_fn(params):
return model_builder.build_model(params, mode=ModeKeys.PREDICT_WITH_GT)
logging.info('Eval num_replicas_in_sync %d num_workers %d is_multi_host %s',
strategy.num_replicas_in_sync, num_workers, is_multi_host)
if is_multi_host:
eval_input_fn = functools.partial(
eval_input_fn,
batch_size=params.eval.batch_size // strategy.num_replicas_in_sync)
dist_executor = DetectionDistributedExecutor(
strategy=strategy,
params=params,
model_fn=_model_fn,
loss_fn=model_builder.build_loss_fn,
is_multi_host=is_multi_host,
predict_post_process_fn=model_builder.post_processing,
trainable_variables_filter=model_builder
.make_filter_trainable_variables_fn())
if mode == 'eval':
results = dist_executor.evaluate_from_model_dir(
model_dir=params.model_dir,
eval_input_fn=eval_input_fn,
eval_metric_fn=model_builder.eval_metrics,
eval_timeout=params.eval.eval_timeout,
min_eval_interval=params.eval.min_eval_interval,
total_steps=params.train.total_steps)
else:
# Run evaluation once for a single checkpoint.
if not checkpoint_path:
raise ValueError('checkpoint_path cannot be empty.')
if tf.io.gfile.isdir(checkpoint_path):
checkpoint_path = tf.train.latest_checkpoint(checkpoint_path)
summary_writer = executor.SummaryWriter(params.model_dir, 'eval')
results, _ = dist_executor.evaluate_checkpoint(
checkpoint_path=checkpoint_path,
eval_input_fn=eval_input_fn,
eval_metric_fn=model_builder.eval_metrics,
summary_writer=summary_writer)
for k, v in results.items():
logging.info('Final eval metric %s: %f', k, v)
return results
else:
raise ValueError('Mode not found: %s.' % mode)
def run(callbacks=None):
keras_utils.set_session_config(enable_xla=FLAGS.enable_xla)
params = config_factory.config_generator(FLAGS.model)
params = params_dict.override_params_dict(
params, FLAGS.config_file, is_strict=True)
params = params_dict.override_params_dict(
params, FLAGS.params_override, is_strict=True)
params.override(
{
'strategy_type': FLAGS.strategy_type,
'model_dir': FLAGS.model_dir,
'strategy_config': executor.strategy_flags_dict(),
},
is_strict=False)
# Make sure use_tpu and strategy_type are in sync.
params.use_tpu = (params.strategy_type == 'tpu')
if not params.use_tpu:
params.override({
'architecture': {
'use_bfloat16': False,
},
'norm_activation': {
'use_sync_bn': False,
},
}, is_strict=True)
params.validate()
params.lock()
pp = pprint.PrettyPrinter()
params_str = pp.pformat(params.as_dict())
logging.info('Model Parameters: %s', params_str)
train_input_fn = None
eval_input_fn = None
training_file_pattern = FLAGS.training_file_pattern or params.train.train_file_pattern
eval_file_pattern = FLAGS.eval_file_pattern or params.eval.eval_file_pattern
if not training_file_pattern and not eval_file_pattern:
raise ValueError('Must provide at least one of training_file_pattern and '
'eval_file_pattern.')
if training_file_pattern:
# Use global batch size for single host.
train_input_fn = input_reader.InputFn(
file_pattern=training_file_pattern,
params=params,
mode=input_reader.ModeKeys.TRAIN,
batch_size=params.train.batch_size)
if eval_file_pattern:
eval_input_fn = input_reader.InputFn(
file_pattern=eval_file_pattern,
params=params,
mode=input_reader.ModeKeys.PREDICT_WITH_GT,
batch_size=params.eval.batch_size,
num_examples=params.eval.eval_samples)
if callbacks is None:
callbacks = []
if FLAGS.log_steps:
callbacks.append(
keras_utils.TimeHistory(
batch_size=params.train.batch_size,
log_steps=FLAGS.log_steps,
))
return run_executor(
params,
FLAGS.mode,
checkpoint_path=FLAGS.checkpoint_path,
train_input_fn=train_input_fn,
eval_input_fn=eval_input_fn,
callbacks=callbacks)
def main(argv):
del argv # Unused.
run()
if __name__ == '__main__':
tf.config.set_soft_device_placement(True)
app.run(main)