-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolve.py
77 lines (65 loc) · 2.61 KB
/
solve.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
from diffusers import (
StableDiffusionPipeline,
UNet2DConditionModel,
DPMSolverMultistepScheduler,
)
from arc2face.arc2face import CLIPTextModelWrapper, project_face_embs
import torch
from insightface.app import FaceAnalysis
from PIL import Image
import numpy as np
from utills import EmbeddingMapper, generate_images
import os
import pickle
from tqdm import tqdm
import json
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
base_model = 'stable-diffusion-v1-5/stable-diffusion-v1-5'
encoder = CLIPTextModelWrapper.from_pretrained(
'models', subfolder="encoder", torch_dtype=torch.float16
)
unet = UNet2DConditionModel.from_pretrained(
'models', subfolder="arc2face", torch_dtype=torch.float16
)
pipeline = StableDiffusionPipeline.from_pretrained(
base_model,
text_encoder=encoder,
unet=unet,
torch_dtype=torch.float16,
safety_checker=None
)
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
pipeline = pipeline.to(device)
app = FaceAnalysis(name='buffalo_l', root='./', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(512, 512))
mapper = EmbeddingMapper(input_dim=512, output_dim=512)
mapper.load_state_dict(torch.load("./models/emb_mapper/emb_mapper.pth"))
mapper.eval()
with open('embedding_v3.pickle', 'rb') as file:
loaded_list = pickle.load(file)
folder_for_recovered = "recovered_3"
os.makedirs(folder_for_recovered, exist_ok=True)
files_done = os.listdir(folder_for_recovered)
similarities_dict = dict()
for key, value in tqdm(loaded_list.items()):
if key in files_done:
print(f"{key} skipped")
continue
best_sim = 0.0
count = 0
while count < 15:
images, similarities, output_json = generate_images(app, mapper, pipeline, device,
tensor=loaded_list[key]["embedding"], num_inferences=25,
guidance_scale=3.0, num_images=6)
index_best = np.argmax(similarities)
if similarities[index_best] > best_sim:
best_image = images[index_best]
best_sim = similarities[index_best]
count = 0
count += 1
best_image.save(os.path.join(folder_for_recovered, f'{key}'))
similarities_dict[key] = best_sim
print(similarities_dict[key])
with open('similarities_3.json', 'w', encoding='utf-8') as file:
# Сохраняем словарь с отступами для удобного чтения
json.dump(similarities_dict, file, ensure_ascii=False, indent=4)