-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpublications.html
executable file
·540 lines (516 loc) · 43.4 KB
/
publications.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1">
<meta name="description" content="Lazaros Nalpantidis academic website">
<meta name="author" content="Lazaros Nalpantidis">
<title>Lazaros Nalpantidis</title>
<!-- Bootstrap Core CSS -->
<link href="css/bootstrap.min.css" rel="stylesheet">
<!-- Custom CSS -->
<style>
body {
padding-top: 70px;
/* Required padding for .navbar-fixed-top. Remove if using .navbar-static-top. Change if height of navigation changes. */
}
</style>
<!-- HTML5 Shim and Respond.js IE8 support of HTML5 elements and media queries -->
<!-- WARNING: Respond.js doesn't work if you view the page via file:// -->
<!--[if lt IE 9]>
<script src="https://oss.maxcdn.com/libs/html5shiv/3.7.0/html5shiv.js"></script>
<script src="https://oss.maxcdn.com/libs/respond.js/1.4.2/respond.min.js"></script>
<![endif]-->
<script>
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
})(window,document,'script','https://www.google-analytics.com/analytics.js','ga');
ga('create', 'UA-35354251-2', 'auto');
ga('send', 'pageview');
</script>
</head>
<body>
<!-- Navigation -->
<nav class="navbar navbar-default navbar-fixed-top" role="navigation">
<div class="container">
<!-- Brand and toggle get grouped for better mobile display -->
<div class="navbar-header">
<button type="button" class="navbar-toggle" data-toggle="collapse" data-target="#bs-example-navbar-collapse-1">
<span class="sr-only">Toggle navigation</span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<a class="navbar-brand" href="index.html">Home</a>
</div>
<!-- Collect the nav links, forms, and other content for toggling -->
<div class="collapse navbar-collapse" id="bs-example-navbar-collapse-1">
<ul class="nav navbar-nav">
<li><a href="research.html">Research</a></li>
<li><a href="activities.html">Activities</a></li>
<li><a href="publications.html">Publications</a></li>
<li><a href="teaching.html">Teaching</a></li>
</ul>
</div>
<!-- /.navbar-collapse -->
</div>
<!-- /.container -->
</nav>
<!-- Page Content -->
<div class="container-fluid">
<p align="right"><sub>
[<a href="#journals">journals</a>]
[<a href="#confs">conferences/workshops</a>]
[<a href="#books">books</a>]
[<a href="#editorials">editorials</a>]
[<a href="#chapters">book chapters</a>]
[<a href="#theses">theses</a>]
[<a href="#techrep">technical reports</a>]<br>
</sub> <strong></strong></p>
<a name="journals"></a>
<h3>Journals</h3><br>
<p> </p>
<ol reversed="reversed">
<li>D. Arapis, M. Jami, and L. Nalpantidis, “Efficient human 3D localization and free space segmentation for human-aware mobile robots in warehouse facilities,” Frontiers in Robotics and AI, vol. 10, 2023.</li>
<li>J. Li, R. Güldenring, and L. Nalpantidis, “Real-time joint-stem prediction for agricultural robots in grasslands using multi-task learning,” Agronomy, vol. 13, no. 9, 2023.</li>
<li>R. Güldenring, F. K. van Evert, and L. Nalpantidis, “RumexWeeds: a grassland dataset for agricultural robotics,” Journal of Field Robotics, vol. 40, pp. 1639–1656, 2023.</li>
<li>W. Yang, J. K. Crone, C. R. Lønkjær, M. M. Ribo, S. Shan, F. D. Frumosu, D. Papageorgiou, Y. Liu, L. Nalpantidis, and Y. Zhang, “Vision-guided robotic automation of vat polymerization additive manufacturing production: design, calibration and verification,” Journal of Intelligent Manufacturing and Special Equipment, vol. 4, no. 2, pp. 85–98, 2023.</li>
<li>J. Becktor, E. Boukas, and L. Nalpantidis, “Re-annotation of training samples for robust maritime object detection,” Machine Learning with Applications, p. 100411, 2022.</li>
<li>R. E. Nielsen, D. Papageorgiou, L. Nalpantidis, B. T. Jensen, and M. Blanke, “Machine learning enhancement of manoeuvring prediction for ship digital twin using full-scale recordings,” Ocean Engineering, vol. 257, p. 111579, 2022.</li>
<li>R. Güldenring and L. Nalpantidis, “Self-supervised contrastive learning on agricultural images,” Computers and Electronics in Agriculture, vol. 191, 2021.</li>
<li>F. E. T. Schöller, L. Nalpantidis, and M. Blanke, “Buoy light pattern classification for autonomous ship navigation using recurrent neural networks,” IEEE Transactions on Intelligent Transportation Systems, 2021.</li>
<li>J. B. Becktor, E. Boukas, M. Blanke, and L. Nalpantidis, “Reweighting neural network examples for robust object detection at sea,” Electronics Letters, vol. 57, no. 16, pp. 608–610, 2021.</li>
<li>R. E. Andersen, L. Nalpantidis, O. Ravn, and E. Boukas, “Simultaneous regression-based spatial coverage estimation and object detection with deep learning,” Electronics Letters, vol. 57, no. 16, pp. 605–607, 2021.</li>
<li>T. Kounalakis, G. Triantafyllidis, and L. Nalpantidis, “Deep learning-based visual recognition of rumex for robotic precision farming,” Computers and Electronics in Agriculture, vol. 165, 2019.</li>
<li>T. Kounalakis, G. Triantafyllidis, and L. Nalpantidis, “Image-based recognition framework for robotic weed control systems,” Multimedia Tools and Applications, vol. 77, no. 8, pp. 9567–9594, 2018.</li>
<li>A. S. Polydoros and L. Nalpantidis, “Survey of model-based reinforcement learning: Applications on robotics,” Journal of Intelligent and Robotic Systems, vol. 86, no. 2, pp. 153–173, 2017.</li>
<li>V. Krüger, A. Chazoule, M. Crosby, A. Lasnier, M. R. Pedersen, F. Rovida, L. Nalpantidis, R. Petrick, C. Toscano, and G. Veiga, “A vertical and cyber-physical integration of cognitive robots in manufacturing,” Proceedings of the IEEE, vol. 104, no. 5, pp. 1114–1127, 2016.</li>
<li>I. Kostavelis, E. Boukas, L. Nalpantidis, and A. Gasteratos, “Stereo based visual odometry for autonomous robot navigation,” International Journal of Advanced Robotic Systems, vol. 13, no. 1, 2016.<br>
<li>M. R. Pedersen, L. Nalpantidis, R. S. Andersen, C. Schou, S. Bøgh, V. Krüger, and O. Madsen, “Robot skills for manufacturing: From concept to industrial deployment,” Robotics and Computer-Integrated Manufacturing, vol. 37, no. 282–291, 2015.<br>
</li>
<li>I. Kostavelis, L. Nalpantidis, E. Boukas, M.
Rodrigalvarez, I. Stamoulias, G. Lentaris, D.
Diamantopoulos, K. Siozios, D. Soudris, and A.
Gasteratos, “SPARTAN: Developing a vision system for
future autonomous space exploration robots,” Journal of
Field Robotics, vol. 31, no. 1, pp. 107–140, 2014.</li>
<li>I. Kostavelis, L. Nalpantidis, and
A. Gasteratos, “Collision risk assessment for
autonomous robots by offline traversability learning,”
Robotics and Autonomous Systems, vol. 60, no. 11, pp.
1367–1376, 2012.</li>
<li>D. Chrysostomou, A. Gasteratos,
L. Nalpantidis, and G. C. Sirakoulis,
“Multi-view 3D scene reconstruction using ant colony
optimization techniques,” Measurement Science and
Technology, vol. 23, no. 11, 2012.</li>
<li> C. Smith, Y. Karayiannidis,
L. Nalpantidis, X. Gratal, P. Qi,
D. V. Dimarogonas, and D. Kragic, “Dual arm
manipulation - a survey,” Robotics and Autonomous
Systems, vol. 60, no. 10, pp. 1340–1353,
2012.</li>
<li>L. Nalpantidis, G. C. Sirakoulis, and
A. Gasteratos, “Non-probabilistic cellular
automata-enhanced stereo vision simultaneous
localisation and mapping (SLAM),” Measurement Science
and Technology, vol. 22, no. 11, 2011.</li>
<li>L. Nalpantidis and A. Gasteratos,
“Stereovision-based fuzzy obstacle avoidance method,”
International Journal of Humanoid Robotics, vol. 8,
no. 1, pp. 169–183, 2011.</li>
<li>L. Nalpantidis, A. Amanatiadis, G. C.
Sirakoulis, and A. Gasteratos, “Efficient
hierarchical matching algorithm for processing
uncalibrated stereo vision images and its hardware
architecture,” IET Image Processing, vol. 5,
no. 5, pp. 481–492, 2011.</li>
<li>L. Nalpantidis and A. Gasteratos,
“Biologically and psychophysically inspired adaptive
support weights algorithm for stereo correspondence,”
Robotics and Autonomous Systems, vol. 58,
no. 5, pp. 457–464, 2010.</li>
<li>L. Nalpantidis and A. Gasteratos, “Stereo
vision for robotic applications in the presence of
non-ideal lighting conditions,” Image and Vision
Computing, vol. 28, no. 6, pp. 940–951,
2010.</li>
<li>L. Nalpantidis, G. C. Sirakoulis, and
A. Gasteratos, “Review of stereo vision algorithms:
from software to hardware,” International Journal of
Optomechatronics, vol. 2, no. 4,
pp. 435–462, 2008.</li>
<li>G. Fikos, L. Nalpantidis, and
S. Siskos, “A compact APS with FPN reduction and
focusing criterion using fgmos photocell,” Sensors and
Actuators A:Physical, vol. 147, pp. 419–424,
October 2008.</li>
</ol>
<a name="confs"></a>
<p><strong></strong> </p>
<h3>Conferences / Workshops</h3>
<p> </p>
<ol reversed="reversed">
<li>J. Ren, J. Wu, O. Ravn, and L. Nalpantidis, “Functional requirements elicitation approach for the design and integration of robotic system for automation,” in International Conference on System Reliability and Safety Engineering (SRSE), (Beijing, China), 2023.</li>
<li>J. Ren, L. Nalpantidis, N. A. Andersen, and O. Ravn, “Building digital twin of mobile robotics testbed using centralized localization system,” in International Conference on Control, Mechatronics and Automation (ICCMA), (Grimstad, Norway), 2023.</li>
<li>R. E. Andersen, R. Güldenring, J. Ren, D. Arapis, P. Schmidt, O. Ravn, E. Boukas, and L. Nalpantidis, “Online learning for obstacle detection in construction for a multi-robot setting,” in IEEE International Conference on Imaging Systems and Techniques, (Copenhagen, Denmark), 2023.</li>
<li>S. L. Alaguero, A. Chirtoaca, D. Chrysostomou, and L. Nalpantidis, “Communicating robot intentions: Usability study of a socially-aware mobile robot,” in IEEE International Conference on Imaging Systems and Techniques, (Copenhagen, Denmark), 2023.</li>
<li>P. Schmidt, R. Güldenring, and L. Nalpantidis, “SIFT-guided saliency-based augmentation for weed detection in grassland images: Fusing classic computer vision with deep learning,” in International Conference in Computer Vision Systems (ICVS), (Vienna, Austria), 2023.</li>
<li>D. Arapis, A. Vallone, M. Jami, and L. Nalpantidis, “Multi-task learning for industrial mobile robot perception using a simulated warehouse dataset,” in European Conference on Mobile Robots (ECMR), (Coimbra, Portugal), 2023.</li>
<li>J. Becktor, F. Schöller, E. Boukas, and L. Nalpantidis, “Robust uncertainty estimation for classification of maritime objects,” in IEEE International Conference on Robotics and Automation (ICRA), (London, UK), 2023.</li>
<li>D. Arapis, M. Jami, and L. Nalpantidis, “Bridging depth estimation and completion for mobile robots reliable 3D perception,” in International Conference on Robot Intelligence Technology and Applications, (Gold Coast, Australia), 2022.</li>
<li>D. Arapis, M. Jami, and L. Nalpantidis, “Challenges in reliable 3D perception for industrial mobile robots,” in IROS Workshop on “Robotic Systems Integration for Supply Chain Workflows: Design, Deploy, Execute”, (Kyoto, Japan), 2022.</li>
<li>J. Becktor, F. E. T. Schöller, E. Boukas, M. Blanke, and L. Nalpantidis, “Bolstering maritime object detection with synthetic data,” in IFAC Conference on Control Applications in Marine Systems, Robotics and Vehicles (CAMS), IFAC-PapersOnLine, 2022.</li>
<li>M. Rudolph, Y. Dawoud, R. Güldenring, L. Nalpantidis, and V. Belagiannis, “Lightweight monocular depth estimation through guided decoding,” in IEEE International Conference on Robotics and Automation (ICRA), (Philadelphia, USA), 2022.</li>
<li>E. Lopez, J. Dominguez, D. Abia, F. van Evert, A. Nieuwenhuizen, M. Sytsma, L. Nalpantidis, R. Güldenring, H. Koonstra, H. Pekkeriet, L. Struik, and J. Fradin, “GALIRUMI project: Galileo-assisted robot to tackle the weed rumex obtusifolius and increase the profitability and sustainability of dairy farming,” in ICRA Workshop on “Agricultural Robotics and Automation”, 2022.</li>
<li>S. Lopez Alaguero, A. Chirtoaca, D. Chrysostomou, and L. Nalpantidis, “Lessons learned from user experiments with a socially-aware mobile robot,” in ICRA Workshop on “Social Robot Navigation: Advances and Evaluation”, 2022.</li>
<li>R. Güldenring, E. Boukas, O. Ravn, and L. Nalpantidis, “Few-leaf learning: Weed segmentation in grasslands,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (Prague, Czech Republic), 2021. <b>(Finalist, Best Paper Award on Agri-Robotics)</b> </li>
<li>R. E. Andersen, L. Nalpantidis, and E. Boukas, “Vessel classification using a regression neural network approach,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (Prague, Czech Republic), 2021.</li>
<li>J. Hornauer, L. Nalpantidis, and V. Belagiannis, “Visual domain adaptation for monocular depth estimation on resource-constrained hardware,” in ICCV Workshop on Embedded and Real-World Computer Vision in Autonomous Driving, 2021.</li>
<li>B. Kovács, A. D. Henriksen, J. D. Stets, and L. Nalpantidis, “Object detection on TPU accelerated embedded devices,” in 13th International Conference of Computer Vision Systems (ICVS), 2021.</li>
<li>R. Kajatin and L. Nalpantidis, “Image segmentation of bricks in masonry wall using a fusion of machine learning algorithms,” in ICPR 2020 workshop on Pattern Recognition in Construction and the Built Environment (PRAConBE 2020), (Milan, Italy), 2020.</li>
<li>R. E. Andersen, L. Nalpantidis, O. Ravn, and E. Boukas, “Investigating deep learning architectures towards autonomous inspection for marine classification,” in IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), (Abudhabi, UAE), 2020.</li>
<li>J. B. Becktor, F. E. T. Schöller, E. Boukas, M. Blanke, and L. Nalpantidis, “Lipschitz constrained neural networks for robust object detection at sea,” in International Conference on Maritime Autonomous Surface Ship (ICMASS), (Ulsan, Korea), 2020.</li>
<li>F. E. T. Schöller, M. Blanke, M. Plenge-Feidenhans’l, and L. Nalpantidis, “Vision-based object tracking in marine environments using features from neural network detections,” in IFAC World Congress, (Berlin, Germany), 2020.</li>
<li>R. T. E. Dvinge, A. Stalmach, and L. Nalpantidis, “Connection-based Bluetooth mesh network as a low energy solution for off-grid data networks,” in 8th International Conference on Modern Circuits and Systems Technologies (MOCAST), 2019.</li>
<li>F. N. Rasmussen, S. T. Andersen, B. Grossmann, E. Boukas, and L. Nalpantidis, “Planar pose estimation using object detecion and reinforcement learning,” in 12th International Conference of Computer Vision Systems (ICVS), Lecture Notes in Computer Science, Springer, 2019.</li>
<li>T. Kounalakis, L. Nalpantidis, G. Triantafyllidis, M. J. Malinowski, and L. Chelini, “A robotic system employing deep learning for visual recognition and detection of weeds in grasslands,” in IEEE International Conference on Imaging Systems and Techniques, (Krakow, Poland), 2018.</li>
<li>J. Spranger, R. Buzatoiu, A. Polydoros, L. Nalpantidis, and E. Boukas, “Human-machine interface for remote training of robot tasks,” in IEEE International Conference on Imaging Systems and Techniques, (Krakow, Poland), 2018.</li>
<li>P. Valentin, T. Kounalakis, and L. Nalpantidis, “Weld classification using gray level co-occurrence matrix and local binary patterns,” in IEEE International Conference on Imaging Systems and Techniques, (Krakow, Poland), 2018.</li>
<li>M. Kapoor, E. Katsanos, S. Thöns, L. Nalpantidis, and J. Winkler, “Structural integrity management with unmanned aerial vehicles: State-of-the-art review and outlook,” in Sixth International Symposium on Life-Cycle Civil Engineering (IALCCE 2018), (Ghent, Belgium), 2018.</li>
<li>E. Boukas, A. S. Polydoros, G. Visentin, L. Nalpantidis, and A. Gasteratos, “Global localization for future space exploration rovers,” in International Conference in Computer Vision Systems (ICVS), vol. 10528 of LNCS, (Hong Kong), Springer, 2017.</li>
<li>T. Kounalakis, G. Triantafyllidis, and L. Nalpantidis, “Vision system for robotized weed recognition in crops and grasslands.,” in International Conference in Computer Vision Systems (ICVS), vol. 10528 of LNCS, (Hong Kong), Springer, 2017.</li>
<li>A. S. Polydoros, E. Boukas, and L. Nalpantidis, “Online multi-target learning of inverse dynamics models for computed-torque control of compliant manipulators,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (Vancouver, Canada), 2017.</li>
<li>F. Rovida, V. Krueger, L. Nalpantidis, A. Charzoule, A. Lasnier, R. Petrick, M. Crosby, C. Toscano, and G. Veiga, “A cyber-physical systems approach for controlling autonomous mobile manipulators,” in Proceedings of the International Conference on Climbing and Walking Robots and Support Technologies for Mobile Machines (CLAWAR),(London, UK), pp. 169–177, 2016.<br>
</li>
<li>A. S. Polydoros and L. Nalpantidis, “A reservoir computing approach for learning forward dynamics of industrial manipulators,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (Daejeon, Korea), 2016.<br>
</li>
<li>T. Kounalakis, G. Triantafyllidis, and L. Nalpantidis, “Weed recognition framework for robotic precision farming,” in IEEE International Conference on Imaging Systems and Techniques, (Chania, Greece), 2016.
</li>
<li>A. S. Polydoros, B. Gromann, F. Rovida, L. Nalpantidis, and V. Krüger, “Accurate and versatile automation of industrial kitting operations with SkiROS,” in 17th Conference Towards Autonomous Robotic Systems (TAROS), (Sheffield, UK), 2016.<br>
</li>
<li>N. Rofalis, L. Nalpantidis, N. A. Andersen, and V. Krüger, “Vision-based robotic system for object agnostic placing operations,” in International Conference on Computer Vision Theory and Applications (VISAPP), (Rome, Italy), 2016.<br>
</li>
<li>A. S. Polydoros, L. Nalpantidis, and V. Krüger, “Advantages and limitations of reservoir computing on model learning for robot control,” in IROS Workshop on Machine Learning in Planning and Control of Robot Motion, (Hamburg, Germany), 2015.<br>
</li>
<li>A. S. Polydoros, L. Nalpantidis, and V. Krüger, “Real-time deep learning of robotic manipulator inverse dynamics,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (Hamburg, Germany), 2015.<br>
</li>
<li>G. Lentaris, I. Stamoulias, D. Diamantopoulos, K.
Maragos, K. Siozios, D. Soudris, M. A. Rodrigalvarez, M.
Lourakis, X. Zabulis, I. Kostavelis, L. Nalpantidis, E.
Boukas, and A. Gasteratos, “SPARTAN/SEXTANT/COMPASS:
advancing space rover vision via reconfigurable
platforms,” in 11th International Symposium on Applied
Reconfigurable Computing (ARC), vol. 9040 of Lecture
Notes in Computer Science, (Bochum, Germany), pp.
475–486, Springer, 2015.<br>
</li>
<li>B. Großmann, M. R. Pedersen, J. Klonovs, D. Herzog, L.
Nalpantidis, and V. Krüger, “Communicating unknown
objects to robots through pointing gestures,” in 15th
Conference Towards Autonomous Robotic Systems (TAROS),
vol. 8717 of Lecture Notes in Computer Science,
(Birmingham, UK), pp. 209–220, Springer-Verlag, 2014.</li>
<li>A. S. Polydoros, L. Nalpantidis, and V. Krüger,
“Towards an intelligent robotic manipulator for
industrial object-placing tasks,” in IAS International
Workshop on Intelligent Robot Assistants, (Padova,
Italy), 2014.</li>
<li>A. S. Polydoros, L. Nalpantidis, and V. Krüger, “A
roadmap towards intelligent and autonomous object
manipulation for assembly tasks,” in ICRA Workshop on
“Autonomous Grasping and Manipulation: An Open
Challenge”, (Hong Kong), 2014.</li>
<li>L. Nalpantidis, D. Kragic, I. Kostavelis, and A.
Gasteratos, “Theta-disparity: an efficient
representation of the 3D scene structure,” in 13th
International Conference on Intelligent Autonomous
Systems (IAS), Lecture Notes in Computer Science,
(Padova, Italy), 2014.</li>
<li>J. Klonovs, D. Herzog, M. R. Pedersen, B. Großmann, L.
Nalpantidis, and V. Krüger, “Robotic system capable of
identifying objects indicated by pointing gestures,” in
Proccedings of the 2nd AAU Workshop on Robotics,
(Aalborg, Denamrk), AAU Press, 2014.</li>
<li>N. Skordilis, N. Vidakis, G. Triantafyllidis, and L.
Nalpantidis, “Depth camera driven mobile robot for human
localization and following,” in Proccedings of the 2nd
AAU Workshop on Robotics, (Aalborg, Denamrk), AAU Press,
2014.</li>
<li>R. S. Andersen, L. Nalpantidis, V. Krüger, O. Madsen,
and T. B. Moeslund, “Using robot skills for flexible
reprogramming of pick operations in industrial
scenarios,” in International Conference on Computer
Vision Theory and Applications (VISAPP), vol. 3,
(Lisbon, Portugal), pp. 678–685, 2014.</li>
<li>M. R. Pedersen, L. Nalpantidis, A. Bobick, and V.
Krüger, “On the integration of hardware-abstracted robot
skills for use in industrial scenarios,” in IROS
Workshop on “Cognitive Robotics Systems: Replicating
Human Actions and Activities”, (Tokyo, Japan), 2013.</li>
<li>I. Kostavelis, E. Boukas, L. Nalpantidis, and A.
Gasteratos, “Visual odometry for autonomous robot
navigation through efficient outlier rejection,” in IEEE
International Conference on Imaging Systems and
Techniques, (Beijing, China), IEEE, October 2013.</li>
<li>L. Nalpantidis, B. Großmann, and V. Krüger, “Fast and
accurate unknown object segmentation for robotic
systems,” in International Symposium on Visual Computing
(ISVC), vol. 8034 of Lecture Notes in Computer Science,
(Rethymnon, Greece), Springer, July 2013.</li>
<li>G. Lentaris, D. Diamantopoulos, K. Siozios, I.
Stamoulias, I. Kostavelis, E. Boukas, L. Nalpantidis, D.
Soudris, A. Gasteratos, and M. A. Aviles, “SPARTAN:
efficient implementation of computer vision algorithms
for autonomous rover navigation,” in 7th HiPEAC Workshop
on Reconfigurable Computing, (Berlin, Germany), European
Network of Excellence on High Performance and Embedded
Architecture and Compilation, January 2013.<br>
</li>
<li>I. Kostavelis, A. Gasteratos, E. Boukas, and L.
Nalpantidis, “Learning the terrain and planning a
collision-free trajectory for indoor post-disaster
environments,” in IEEE International Symposium on
Safety, Security and Rescue Robotics, (College Station,
Texas, USA), November 2012. </li>
<li>L. Nalpantidis, M. Björkman, and D. Kragic, “Yes - yet
another object segmentation: exploiting camera
movement,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), (Vilamoura,
Algarve, Portugal), 2012.</li>
<li>I. Kostavelis, E. Boukas, L. Nalpantidis, and A.
Gasteratos, “Path tracing on polar depth maps for robot
navigation,” in Cellular Automata for Research and
Industry (ACRI), (Santorini, Greece), 2012.</li>
<li>E. Boukas, I. Kostavelis, L. Nalpantidis, and A.
Gasteratos, “Graph based localisation refinement by
orbital images,” in International Symposium on
Artificial Intelligence, Robotics and Automation in
Space, (Turin, Italy), 2012.</li>
<li>I. Kostavelis, L. Nalpantidis, and A. Gasteratos,
“Object recognition using saliency maps and HTM
learning,” in IEEE International Conference on Imaging
Systems and Techniques, (Manchester, United Kingdom),
2012.</li>
<li>I. Kostavelis, E. Boukas, L. Nalpantidis, A.
Gasteratos, and M. Aviles Rodrigalvarez, “SPARTAN
system: Towards a low-cost and high-performance vision
architecture for space exploratory rovers,” in 2nd
International Workshop on Computer Vision in Vehicle
Technology: From Earth to Mars, in conjunction with
ICCV, (Barcelona, Spain), November 2011.</li>
<li>M. Aviles, K. Siozios, D. Diamantopoulos, L.
Nalpantidis, I. Kostavelis, E. Boukas, D. Soudris, and
A. Gasteratos, “A co-design methodology for implementing
computer vision algorithms for rover navigation onto
reconfigurable hardware,” in FPL 2011 workshop on
Computer Vision on Low-Power Reconfigurable
Architectures, (Chania, Greece), September 2011.</li>
<li>I. Kostavelis, L. Nalpantidis, and A. Gasteratos,
“Supervised traversability learning for robot
navigation,” in 12th Conference Towards Autonomous
Robotic Systems, vol. 6856 of Lecture Notes in Computer
Science, (Sheffield, UK), pp. 289–298, Springer-Verlag,
2011.</li>
<li>K. Siozios, D. Diamantopoulos, I. Kostavelis, E.
Boukas, L. Nalpantidis, D. Soudris, A. Gasteratos, M.
Aviles, and I. Anagnostopoulos, “SPARTAN project:
Efficient implementation of computer vision algorithms
onto reconfigurable platform targeting to space
applications,” in 6th International Workshop on
Reconfigurable Communication-centric Systems-on-Chip,
(Montpellier, France), pp. 1–9, June 2011.</li>
<li>L. Nalpantidis, J. Kalomiros, and A. Gasteratos,
“Robust 3D vision for robots using dynamic programming,”
in IEEE International Conference on Imaging Systems and
Techniques, (Batu Ferringhi, Penang, Malaysia), pp.
89–93, May 2011.</li>
<li>D. Chrysostomou, L. Nalpantidis, and A. Gasteratos,
“Lighting compensating multiview stereo,” in IEEE
International Conference on Imaging Systems and
Techniques, (Batu Ferringhi, Penang, Malaysia), pp.
176–179, May 2011.</li>
<li>L. Nalpantidis, G. C. Sirakoulis, A. Carbone, and A.
Gasteratos, “Computationally effective stereovision
SLAM,” in IEEE International Conference on Imaging
Systems and Techniques, (Thessaloniki, Greece), pp.
453–458, July 2010.</li>
<li>I. Kostavelis, L. Nalpantidis, and A. Gasteratos,
“Comparative presentation of real-time obstacle
avoidance algorithms using solely stereo vision,” in
IARP/EURON International Workshop on Robotics for risky
interventions and Environmental
Surveillance-Maintenance, (Sheffield, UK), January 2010.</li>
<li>L. Nalpantidis, D. Chrysostomou, and A. Gasteratos,
“Obtaining reliable depth maps for robotic applications
with a quad-camera system,” in International Conference
on Intelligent Robotics and Applications, vol. 5928 of
Lecture Notes in Computer Science, (Singapore), pp.
906–916, Springer-Verlag, December 2009.</li>
<li> L. Nalpantidis, I. Kostavelis, and A. Gasteratos,
“Stereovision-based algorithm for obstacle avoidance,”
in International Conference on Intelligent Robotics and
Applications, vol. 5928 of Lecture Notes in Computer
Science, (Singapore), pp. 195–204, Springer-Verlag,
December 2009.</li>
<li>Y. Baudoin, D. Doroftei, G. De Cubber, S. A. Berrabah,
C. Pinzon, F. Warlet, J. Gancet, E. Motard, M.
Ilzkovitz, L. Nalpantidis, and A. Gasteratos,
“View-Finder: Robotics assistance to fire-fighting
services and crisis management,” in IEEE International
Workshop on Safety, Security, and Rescue Robotics,
(Denver, Colorado, USA), pp. 1–6, November 2009.</li>
<li>I. Kostavelis, L. Nalpantidis, and A. Gasteratos,
“Real-time algorithm for obstacle avoidance,” in Third
Panhellenic Scientific Student Conference on
Informatics, (Corfu, Greece), September 2009.</li>
<li>L. Nalpantidis, A. Amanatiadis, G. C. Sirakoulis, N.
Kyriakoulis, and A. Gasteratos, “Dense disparity
estimation using a hierarchical matching technique from
uncalibrated stereo vision,” in IEEE International
Workshop on Imaging Systems and Techniques, (Shenzhen,
China), pp. 427–431, May 2009.</li>
<li>G. De Cubber, D. Doroftei, L. Nalpantidis, G. C.
Sirakoulis, and A. Gasteratos, “Stereo-based terrain
traversability analysis for robot navigation,” in
IARP/EURON Workshop on Robotics for Risky Interventions
and Environmental Surveillance, (Brussels, Belgium),
2009.</li>
<li>L. Nalpantidis, G. C. Sirakoulis, and A. Gasteratos,
“A dense stereo correspondence algorithm for hardware
implementation with enhanced disparity selection,” in
5th Hellenic conference on Artificial Intelligence, vol.
5138 of Lecture Notes in Computer Science, (Syros,
Greece), pp. 365–370, Springer-Verlag, 2008.</li>
<li>G. De Cubber, L. Nalpantidis, G. C. Sirakoulis, and A.
Gasteratos, “Intelligent robots need intelligent vision:
Visual 3D perception,” in IARP/EURON Workshop on
Robotics for Risky Interventions and Environmental
Surveillance, (Benicàssim, Spain), 2008.</li>
<li>L. Nalpantidis, G. C. Sirakoulis, and A. Gasteratos,
“Review of stereo matching algorithms for 3D vision,” in
16th International Symposium on Measurement and Control
in Robotics, (Warsaw, Poland), pp. 116–124, 2007.</li>
<li>I. Pappas, L. Nalpantidis, V. Kalenteridis, S. Siskos,
A. A. Hatzopoulos, and C. A. Dimitriadis, “A threshold
voltage variation cancellation technique for analogue
peripheral circuits of a display array using poly-Si
TFTs,” in IEEE International Symposium on Circuits and
Systems, (Kos, Greece), May 2006.</li>
<li>G. Fikos, L. Nalpantidis, and S. Siskos, “A
low-voltage, analog power-law function generator,” in
IEEE International Symposium on Circuits and Systems,
(Kos, Greece), May 2006.</li>
<li>I. Pappas, L. Nalpantidis, and S. Siskos, “A new
analogue driver using poly-Si thin-film transistors for
active matrix displays,” in XX Conference on Design of
Circuits and Integrated Systems, (Lisboa, Portugal),
November 2005.</li>
<li>I. Pappas, L. Nalpantidis, V. Kalenteridis, S. Siskos,
C. A. Dimitriadis, and A. A. Hatzopoulos, “A study of
different types of current mirrors using polysilicon
TFTs,” in Second Conference on Microelectronics,
Microsystems and Nanotechnology, vol. 10 of Journal of
Physics: Conference Series, (Athens, Greece), pp.
373–376, November 2005.</li>
<li>A. A. Hatzopoulos, S. Siskos, C. A. Dimitriadis, N.
Papadopoulos, I. Pappas, and L. Nalpantidis, “A built-in
current sensor using thin-film transistors,” in Second
Conference on Microelectronics, Microsystems and
Nanotechnology, vol. 10 of Journal of Physics:
Conference Series, (Athens, Greece), pp. 289–292,
November 2005.</li>
<li>L. Nalpantidis, G. Fikos, and S. Siskos, “A
low-voltage, low-power generalized power-law function
generator,” in XX Conference on Design of Circuits and
Integrated Systems, (Lisboa, Portugal), November 2005.</li>
<li>G. Fikos, L. Nalpantidis, and S. Siskos, “A 32x32
smart photo-array with minimum-size FGMOS for
amplification and FPN reduction,” in IEEE Workshop on
Signal Processing Systems Design and Implementation,
(Athens, Greece), pp. 199–203, November 2005.</li>
</ol>
<a name="books"></a>
<h3>Books</h3>
<p> </p>
<ol reversed="reversed">
<li>M. Vincze, T. Patten, H. I. Christensen, L. Nalpantidis, and M. Liu, eds., Computer Vision Systems, ICVS 2021, vol. 12899 of Lecture Notes in Computer Science. Springer, 2021.</li>
<li>L. Nalpantidis, V. Krüger, J.-O. Eklundh, and A. Gasteratos, eds., Computer Vision Systems, ICVS 2015, vol. 9163 of Lecture Notes in Computer Science. Springer, 2015.</li>
</ol>
<a name="editorials"></a>
<h3>Editorials</h3>
<p> </p>
<ol reversed="reversed">
<li>L. Nalpantidis, R. Detry, D. Damen, G. Bleser, M. Cakmak, and M. S. Erden, “Cognitive Robotics Systems: Concepts and Applications,” Guest Editorial, Journal of Intelligent and Robotic Systems, 2015.</li>
</ol>
<a name="chapters"></a>
<h3>Book Chapters</h3>
<p> </p>
<ol reversed="reversed">
<li>L. Nalpantidis, “On the use of cellular automata in
vision-based robot exploration,” in Robots and Lattice
Automata (G. C. Sirakoulis and A. Adamatzky, eds.), vol.
13 of Emergence, Complexity and Computation, ch. 11, pp.
247–266, Springer, 2015.</li>
<li>K. Charalampous, I. Kostavelis, E. Boukas, A.
Amanatiadis, L. Nalpantidis, C. Emmanouilidis, and A.
Gasteratos, “Autonomous robot path planning techniques
using cellular automata,” in Robots and Lattice Automata
(G. C. Sirakoulis and A. Adamatzky, eds.), vol. 13 of
Emergence, Complexity and Computation, ch. 8, pp.
175–196, Springer, 2015.</li>
<li>L. Nalpantidis, “Review of real-time stereo 3D imaging
techniques,” in Interactive Displays: Natural
Human-Interface Technologies (A. K. Bhowmik, ed.), ISBN:
978-1-118-63137-9, ch. 6, Wiley-Blackwell, 2014.</li>
<li>I. Kostavelis, E. Boukas, L. Nalpantidis, and A.
Gasteratos, “A mechatronic platform for robotic
educational activities,” in Interdisciplinary
Mechatronics: Engineering Science and Research
Development (M. K. Habib and J. P. Davim, eds.), ISBN:
978-1-8482-1418-7, ch. 20, pp. 543–568, ISTE Wiley,
2013.</li>
<li>L. Nalpantidis, I. Kostavelis, and A. Gasteratos,
“Intelligent stereo vision in autonomous robot
traversability estimation,” in Robotic Vision:
Technologies for Machine Learning and Vision
Applications (M. A. Cazorla Quevedo and J.
Garcia-Rodriguez, eds.), IGI Global, 2012.</li>
<li>L. Nalpantidis and A. Gasteratos, “Stereo vision depth
estimation methods for robotic applications,” in Depth
Map and 3D Imaging Applications: Algorithms and
Technologies (A. S. Malik, T.-S. Choi, and H. Nisar,
eds.), ISBN: 978-1-61350-326-3, ch. 21, pp. 397–417, IGI
Global, 2011.</li>
</ol>
<a name="theses"></a>
<h3>Theses</h3>
<p> </p>
<ol reversed="reversed">
<li>L. Nalpantidis, “Study and implementation of stereo
vision systems for robotic applications”, PhD thesis,
Xanthi, 2010.</li>
<li>L. Nalpantidis, “A design technique for power-law
circuits”, Master thesis, Thessaloniki, 2005.</li>
<li>L. Nalpantidis, “Study and design of a photosensitive
analogue circuit array using Floating Gate MOS
Transistors (FGMOS)”, Graduation thesis, Thessaloniki,
2003.</li>
</ol>
<a name="techrep"></a>
<h3>Technical Reports</h3>
<p> </p>
<ol reversed="reversed">
<li> M. Kapoor, E. Katsanos, L. Nalpantidis, J. Winkler, and S. Thöns, “Structural health monitoring and management with unmanned aerial vehicles: Review and potentials,” Tech. Rep. BYG R-454, DTU Civil Engineering, 2021.</li>
</ol>
</div>
<!-- /.container -->
<!-- jQuery Version 1.11.1 -->
<script src="js/jquery.js"></script>
<!-- Bootstrap Core JavaScript -->
<script src="js/bootstrap.min.js"></script>
</body>
</html>