forked from ElegantGod/SSHA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_kpoint.py
50 lines (45 loc) · 1.51 KB
/
test_kpoint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import cv2
import sys
import numpy as np
import datetime
#sys.path.append('.')
from ssha_detector import SSHDetector
scales = [1200, 1600]
# scales = [200, 600]
t = 2
detector = SSHDetector('./kmodel/e2e', 0)
f = '../sample-images/t1.jpg'
f = 'test_image/test_2.jpg'
if len(sys.argv)>1:
f = sys.argv[1]
img = cv2.imread(f)
im_shape = img.shape
print(im_shape)
target_size = scales[0]
max_size = scales[1]
im_size_min = np.min(im_shape[0:2])
im_size_max = np.max(im_shape[0:2])
# cv2.copyMakeBorder()
img = cv2.copyMakeBorder(img, 5, 5, 5, 5, borderType=cv2.BORDER_CONSTANT, value=[0,0,0])
if im_size_min>target_size or im_size_max>max_size:
im_scale = float(target_size) / float(im_size_min)
# prevent bigger axis from being more than max_size:
if np.round(im_scale * im_size_max) > max_size:
im_scale = float(max_size) / float(im_size_max)
img = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
print('resize to', img.shape)
# for i in xrange(t-1): #warmup
# faces = detector.detect(img)
timea = datetime.datetime.now()
faces = detector.detect(img, threshold=0.8)
timeb = datetime.datetime.now()
for num in range(faces.shape[0]):
bbox = faces[num, 0:4]
cv2.rectangle(img, (bbox[0],bbox[1]),(bbox[2], bbox[3]), (0,255, 0), 2)
kpoint = faces[num, 5:15]
for knum in range(5):
cv2.circle(img, (kpoint[2*knum], kpoint[2*knum+1]), 1, [0,0,255], 2)
cv2.imwrite("res.jpg", img[5:-5,5:-5,:])
diff = timeb - timea
print('detection uses', diff.total_seconds(), 'seconds')
print('find', faces.shape[0], 'faces')